{"title":"Approximation properties of sum-up rounding in the presence of vanishing constraints","authors":"Paul Manns, C. Kirches, F. Lenders","doi":"10.1090/mcom/3606","DOIUrl":null,"url":null,"abstract":"Approximation algorithms like sum-up rounding that allow to compute integer-valued approximations of the continuous controls in a weak∗ sense have attracted interest recently. They allow to approximate (optimal) feasible solutions of continuous relaxations of mixed-integer control problems (MIOCPs) with integer controls arbitrarily close. To this end, they use compactness properties of the underlying state equation, a feature that is tied to the infinite-dimensional vantage point. In this work, we consider a class of MIOCPs that are constrained by pointwise mixed state-control constraints. We show that a continuous relaxation that involves so-called vanishing constraints has beneficial properties for the described approximation methodology. Moreover, we complete recent work on a variant of the sum-up rounding algorithm for this problem class. In particular, we prove that the observed infeasibility of the produced integer-valued controls vanishes in an L∞-sense with respect to the considered relaxation. Moreover, we improve the bound on the control approximation error to a value that is asymptotically tight.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"4058 2 1","pages":"1263-1296"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Approximation algorithms like sum-up rounding that allow to compute integer-valued approximations of the continuous controls in a weak∗ sense have attracted interest recently. They allow to approximate (optimal) feasible solutions of continuous relaxations of mixed-integer control problems (MIOCPs) with integer controls arbitrarily close. To this end, they use compactness properties of the underlying state equation, a feature that is tied to the infinite-dimensional vantage point. In this work, we consider a class of MIOCPs that are constrained by pointwise mixed state-control constraints. We show that a continuous relaxation that involves so-called vanishing constraints has beneficial properties for the described approximation methodology. Moreover, we complete recent work on a variant of the sum-up rounding algorithm for this problem class. In particular, we prove that the observed infeasibility of the produced integer-valued controls vanishes in an L∞-sense with respect to the considered relaxation. Moreover, we improve the bound on the control approximation error to a value that is asymptotically tight.