A probabilistic-based PV and energy storage sizing tool for residential loads

Xiangqi Zhu, Jiahong Yan, N. Lu
{"title":"A probabilistic-based PV and energy storage sizing tool for residential loads","authors":"Xiangqi Zhu, Jiahong Yan, N. Lu","doi":"10.1109/TDC.2016.7519940","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic-based sizing tool for residential home owners, load serving entities, and utilities to select energy storage (ES) and photovoltaic (PV) based on historical load characteristics and load management options. The inputs of the tool include historical residential load profiles and solar radiation data. The outputs of the tool include ensembles of the net load profiles (load minus solar), with and without applying load energy management for different PV and ES installation capacities. The operation statistics of the ES is used to determine the confidence levels of meeting selected performance criterion. In the simulation, a set of 1-year, 15-minute data collected from 50 actual residential homes is used as the load inputs. A set of 1-year, 5-minute actual solar radiation data is used as the solar inputs. Managing load consumptions for reducing the size of ES is investigated by controlling air conditioning loads. Simulation results show that the probabilistic-based sizing method can give the users a clear comparison of the tradeoffs among different options and assist them make more informed decisions.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"210 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a probabilistic-based sizing tool for residential home owners, load serving entities, and utilities to select energy storage (ES) and photovoltaic (PV) based on historical load characteristics and load management options. The inputs of the tool include historical residential load profiles and solar radiation data. The outputs of the tool include ensembles of the net load profiles (load minus solar), with and without applying load energy management for different PV and ES installation capacities. The operation statistics of the ES is used to determine the confidence levels of meeting selected performance criterion. In the simulation, a set of 1-year, 15-minute data collected from 50 actual residential homes is used as the load inputs. A set of 1-year, 5-minute actual solar radiation data is used as the solar inputs. Managing load consumptions for reducing the size of ES is investigated by controlling air conditioning loads. Simulation results show that the probabilistic-based sizing method can give the users a clear comparison of the tradeoffs among different options and assist them make more informed decisions.
基于概率的住宅负荷光伏和储能分级工具
本文提出了一种基于概率的分级工具,供住宅业主、负荷服务实体和公用事业公司根据历史负荷特征和负荷管理选项选择储能(ES)和光伏(PV)。该工具的输入包括历史住宅负荷曲线和太阳辐射数据。该工具的输出包括净负荷概况(负荷减去太阳能)的整体,针对不同的光伏和ES安装容量,有或没有应用负荷能源管理。ES的运行统计量用于确定满足选定性能标准的置信水平。在模拟中,从50个实际住宅中收集的一组1年15分钟的数据被用作负载输入。使用一组1年5分钟的实际太阳辐射数据作为太阳输入。通过控制空调负荷,研究了控制负荷消耗以减小ES尺寸的方法。仿真结果表明,基于概率的分级方法可以让用户清楚地比较不同选项之间的权衡,帮助他们做出更明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信