Random Lindblad Operators Obeying Detailed Balance

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
W. Tarnowski, Dariusz Chru'sci'nski, S. Denisov, K. Życzkowski
{"title":"Random Lindblad Operators Obeying Detailed Balance","authors":"W. Tarnowski, Dariusz Chru'sci'nski, S. Denisov, K. Życzkowski","doi":"10.1142/S1230161223500075","DOIUrl":null,"url":null,"abstract":"We introduce different ensembles of random Lindblad operators [Formula: see text], which satisfy quantum detailed balance condition with respect to given stationary state [Formula: see text] of size [Formula: see text], and investigate their spectral properties. Such operators are known as ‘Davies generators’ and their eigenvalues are real; however, their spectral densities depend on [Formula: see text]. We propose different structured ensembles of random matrices, which allow us to tackle the problem analytically in the extreme cases of Davies generators corresponding to random [Formula: see text] with a nondegenerate spectrum or the maximally mixed stationary state, [Formula: see text]. Interestingly, in the latter case the density can be reasonably well approximated by integrating out the imaginary component of the spectral density characteristic to the ensemble of random unconstrained Lindblad operators. The case of asymptotic states with partially degenerated spectra is also addressed. Finally, we demonstrate that similar universal properties hold for the detailed balance-obeying Kolmogorov generators obtained by applying superdecoherence to an ensemble of random Davies generators. In this way we construct an ensemble of random classical generators with imposed detailed balance condition.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"13 1","pages":"2350007:1-2350007:32"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161223500075","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce different ensembles of random Lindblad operators [Formula: see text], which satisfy quantum detailed balance condition with respect to given stationary state [Formula: see text] of size [Formula: see text], and investigate their spectral properties. Such operators are known as ‘Davies generators’ and their eigenvalues are real; however, their spectral densities depend on [Formula: see text]. We propose different structured ensembles of random matrices, which allow us to tackle the problem analytically in the extreme cases of Davies generators corresponding to random [Formula: see text] with a nondegenerate spectrum or the maximally mixed stationary state, [Formula: see text]. Interestingly, in the latter case the density can be reasonably well approximated by integrating out the imaginary component of the spectral density characteristic to the ensemble of random unconstrained Lindblad operators. The case of asymptotic states with partially degenerated spectra is also addressed. Finally, we demonstrate that similar universal properties hold for the detailed balance-obeying Kolmogorov generators obtained by applying superdecoherence to an ensemble of random Davies generators. In this way we construct an ensemble of random classical generators with imposed detailed balance condition.
服从详细平衡的随机Lindblad操作符
我们引入了不同的随机Lindblad算子[公式:见文],它们满足大小为[公式:见文]的给定稳态[公式:见文]的量子详细平衡条件,并研究了它们的谱性质。这样的算子被称为“戴维斯发生器”,它们的特征值是实数;然而,它们的光谱密度取决于[公式:见文本]。我们提出了不同结构的随机矩阵集合,这使我们能够在戴维斯发生器的极端情况下解析解决问题,这些发生器对应于具有非退化谱或最大混合稳态的随机[公式:见文本]。有趣的是,在后一种情况下,通过将谱密度特性的虚分量积分到随机无约束Lindblad算子的集合中,可以相当好地近似密度。讨论了谱部分简并的渐近状态。最后,我们证明了将超退相干应用于随机Davies发生器集合得到的详细的服从平衡的Kolmogorov发生器也具有类似的普适性质。通过这种方法,我们构造了一个带有详细平衡条件的随机经典发生器集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信