{"title":"Investigation of large scale use of radioactive krypton-85 for leak detection in the Saturn space vehicle","authors":"L.E. Brownell, M.A. Farvar, G.L. Gyorey, M. York","doi":"10.1016/0369-5816(65)90151-1","DOIUrl":null,"url":null,"abstract":"<div><p>A major problem in space flight has been leakage of fluids and gases and is particularly serious at launching. Comparatively small leaks of propellant and/or oxidizer can cause disasterous explosions. The emphasis on the initial studies reported in this article has been the development of an improved method for leak detection during factory test and checkout prior to launching and space flight. However, the long-range objective of a versatile leak detection system that could be used in space, during launching, as well as during static testing, was kept in view. A leak detection technique was developed based on the use of Kr<sup>85</sup> as a radiotracer. This technique is described and is believed to be more versatile than any other. Krypton has sufficient solubility to be used as a tracer in all liquids tested, except hydrogen. Leakage rates can be determined with greater precision in the order of 0.005 SCIM (Standard Cubic Inches per Minute) than by any other methods. Because of safety and ease of use, radiokrypton shows great promise for many applications.</p></div>","PeriodicalId":100973,"journal":{"name":"Nuclear Structural Engineering","volume":"1 5","pages":"Pages 492-499"},"PeriodicalIF":0.0000,"publicationDate":"1965-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0369-5816(65)90151-1","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0369581665901511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A major problem in space flight has been leakage of fluids and gases and is particularly serious at launching. Comparatively small leaks of propellant and/or oxidizer can cause disasterous explosions. The emphasis on the initial studies reported in this article has been the development of an improved method for leak detection during factory test and checkout prior to launching and space flight. However, the long-range objective of a versatile leak detection system that could be used in space, during launching, as well as during static testing, was kept in view. A leak detection technique was developed based on the use of Kr85 as a radiotracer. This technique is described and is believed to be more versatile than any other. Krypton has sufficient solubility to be used as a tracer in all liquids tested, except hydrogen. Leakage rates can be determined with greater precision in the order of 0.005 SCIM (Standard Cubic Inches per Minute) than by any other methods. Because of safety and ease of use, radiokrypton shows great promise for many applications.