Learning color receptive fields and color differential structure

B. H. Romeny
{"title":"Learning color receptive fields and color differential structure","authors":"B. H. Romeny","doi":"10.1109/ICNC.2015.7377980","DOIUrl":null,"url":null,"abstract":"In this paper we study the role of brain plasticity, and investigate the emergence and self-emergence of receptive fields from scalar and color natural images by principal component analysis of image patches. We describe the classical experiment on localized PCA on center-surround weighted patches of natural scalar images. The resulting set turns out to show great similarity to Gaussian spatial derivatives, and exhibits steerability behavior. We then relate the famous experiment by Blakemore of training a cat with only visual horizontal bar information with PCA analysis of images with primarily unidirectional structure. PCA is performed for patches of RGB natural color images. The resulting profiles resemble spatio-spectral operators extracting color differential structure and shape. We discuss how spatio-spectral Gaussian derivative operators along the wavelength dimension can be modeled, originally proposed by Koenderink, and based on Hering's opponent color theory. The discussion puts the PCA findings in the perspective of multi-scale Gaussian differential geometry, multi-orientation sub-Riemannian geometry, and PCA on affinity matrices for contextual models.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"25 1","pages":"143-148"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2015.7377980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the role of brain plasticity, and investigate the emergence and self-emergence of receptive fields from scalar and color natural images by principal component analysis of image patches. We describe the classical experiment on localized PCA on center-surround weighted patches of natural scalar images. The resulting set turns out to show great similarity to Gaussian spatial derivatives, and exhibits steerability behavior. We then relate the famous experiment by Blakemore of training a cat with only visual horizontal bar information with PCA analysis of images with primarily unidirectional structure. PCA is performed for patches of RGB natural color images. The resulting profiles resemble spatio-spectral operators extracting color differential structure and shape. We discuss how spatio-spectral Gaussian derivative operators along the wavelength dimension can be modeled, originally proposed by Koenderink, and based on Hering's opponent color theory. The discussion puts the PCA findings in the perspective of multi-scale Gaussian differential geometry, multi-orientation sub-Riemannian geometry, and PCA on affinity matrices for contextual models.
学习色彩感受域和色彩差异结构
本文研究了大脑可塑性的作用,通过对图像斑块的主成分分析,探讨了标量和彩色自然图像中感受野的出现和自出现。描述了在自然标量图像的中心-环绕加权斑块上进行局部主成分分析的经典实验。结果表明,所得集与高斯空间导数具有很大的相似性,并表现出可操控性。然后,我们将Blakemore的著名实验(仅用视觉水平条信息训练猫)与主要是单向结构的图像的PCA分析联系起来。对RGB自然彩色图像的斑块进行主成分分析。所得轮廓类似于提取色差结构和形状的空间光谱算子。我们讨论了如何沿波长维度的空间光谱高斯导数算子可以建模,最初由Koenderink提出,并基于Hering的对手颜色理论。讨论将PCA的发现放在多尺度高斯微分几何、多方向亚黎曼几何和上下文模型亲和矩阵上的PCA的角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信