Novel metal-based photosensitizers for photodynamic therapy: exploratory study (Conference Presentation)

Lindsey Carlsen, T. Mandeville, Patrick C. Barrett, Evan Bradner, Tariq Sainuddin, S. McFarland, Sarah Chamberlain, D. Bellnier, G. Shafirstein
{"title":"Novel metal-based photosensitizers for photodynamic therapy: exploratory study (Conference Presentation)","authors":"Lindsey Carlsen, T. Mandeville, Patrick C. Barrett, Evan Bradner, Tariq Sainuddin, S. McFarland, Sarah Chamberlain, D. Bellnier, G. Shafirstein","doi":"10.1117/12.2526180","DOIUrl":null,"url":null,"abstract":"Ruthenium and osmium-based photosensitizers (PS) are compounds of interest for use in photodynamic therapy (PDT). These PS’s can be activated by light wavelengths in the range of 400-675 nm, which can be selected based on the tumor environment, treatment area, and available light sources. The objective of this study was to explore these PS’s for the treatment of several relatively aggressive cancer cell lines. A human adenocarcinoma cell line (A549) was treated with ruthenium-based compounds at concentrations of 1, 5, or 10 uM, followed by light treatment of 93 J/cm2 at either 532 nm or 630 nm. Similarly, osmium-based compounds were used to treat A549, murine melanoma (B16F10) and squamous cell carcinoma (SCCVII) cell lines at concentrations of 0.05, 1, or 3 uM, followed by light treatment of 93 J/cm2 at 630 nm. Cells survival was assessed 24 hours after PDT treatment using either alamarBlue or MTT cell viability assays. In-vitro MTT viability assays revealed that ruthenium-based compounds activated with 630 nm light showed high SCCVII cell toxicity at 5uM. AlamarBlue assays have shown that ruthenium based compounds activated by 532 nm light show high A549 cell toxicity at 1uM in-vitro. Osmium-based compounds showed optimal PDT-mediated cytotoxicity in SCCVII, A549, and B16F10 cell lines at a concentration of 1uM activated by 630 nm light, while exhibiting minimal dark toxicity. The Ruthenium and Osmium-based compounds are potentially potent PSs against lung, melanoma and squamous cell carcinoma cells, in-vitro.","PeriodicalId":6365,"journal":{"name":"17th International Photodynamic Association World Congress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Photodynamic Association World Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2526180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ruthenium and osmium-based photosensitizers (PS) are compounds of interest for use in photodynamic therapy (PDT). These PS’s can be activated by light wavelengths in the range of 400-675 nm, which can be selected based on the tumor environment, treatment area, and available light sources. The objective of this study was to explore these PS’s for the treatment of several relatively aggressive cancer cell lines. A human adenocarcinoma cell line (A549) was treated with ruthenium-based compounds at concentrations of 1, 5, or 10 uM, followed by light treatment of 93 J/cm2 at either 532 nm or 630 nm. Similarly, osmium-based compounds were used to treat A549, murine melanoma (B16F10) and squamous cell carcinoma (SCCVII) cell lines at concentrations of 0.05, 1, or 3 uM, followed by light treatment of 93 J/cm2 at 630 nm. Cells survival was assessed 24 hours after PDT treatment using either alamarBlue or MTT cell viability assays. In-vitro MTT viability assays revealed that ruthenium-based compounds activated with 630 nm light showed high SCCVII cell toxicity at 5uM. AlamarBlue assays have shown that ruthenium based compounds activated by 532 nm light show high A549 cell toxicity at 1uM in-vitro. Osmium-based compounds showed optimal PDT-mediated cytotoxicity in SCCVII, A549, and B16F10 cell lines at a concentration of 1uM activated by 630 nm light, while exhibiting minimal dark toxicity. The Ruthenium and Osmium-based compounds are potentially potent PSs against lung, melanoma and squamous cell carcinoma cells, in-vitro.
用于光动力治疗的新型金属光敏剂:探索性研究(会议报告)
钌和锇基光敏剂(PS)是用于光动力治疗(PDT)感兴趣的化合物。这些PS可以通过400-675 nm范围内的光波长激活,可以根据肿瘤环境,治疗区域和可用光源选择波长。本研究的目的是探索这些PS用于治疗几种相对侵袭性的癌细胞系。用浓度为1、5或10 uM的钌基化合物处理人腺癌细胞系(A549),然后在532 nm或630 nm处进行93 J/cm2的光处理。同样,我们用含氧化合物在0.05、1或3um浓度下治疗A549、小鼠黑色素瘤(B16F10)和鳞状细胞癌(SCCVII)细胞系,然后在630 nm下进行93 J/cm2的光处理。使用alamarBlue或MTT细胞活力测定法评估PDT治疗后24小时细胞存活率。体外MTT活性分析显示,钌基化合物在630 nm光下活化,在5uM时显示出较高的SCCVII细胞毒性。AlamarBlue实验表明,532 nm光激活的钌基化合物在体外1uM时显示出高的A549细胞毒性。以锇为基础的化合物在630 nm光激活下,在1uM浓度下对SCCVII、A549和B16F10细胞系显示出最佳的pdt介导的细胞毒性,同时表现出最小的暗毒性。基于钌和锇的化合物是潜在的有效的体外抗肺、黑色素瘤和鳞状细胞癌细胞的ps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信