Intelligent Spatial Interpolation-based Frost Prediction Methodology using Artificial Neural Networks with Limited Local Data

Ian Zhou, J. Lipman, M. Abolhasan, N. Shariati
{"title":"Intelligent Spatial Interpolation-based Frost Prediction Methodology using Artificial Neural Networks with Limited Local Data","authors":"Ian Zhou, J. Lipman, M. Abolhasan, N. Shariati","doi":"10.48550/arXiv.2204.08465","DOIUrl":null,"url":null,"abstract":"The weather phenomenon of frost poses great threats to agriculture. As recent frost prediction methods are based on on-site historical data and sensors, extra development and deployment time are required for data collection in any new site. The aim of this article is to eliminate the dependency on on-site historical data and sensors for frost prediction methods. In this article, a frost prediction method based on spatial interpolation is proposed. The models use climate data from existing weather stations, digital elevation models surveys, and normalized difference vegetation index data to estimate a target site's next hour minimum temperature. The proposed method utilizes ensemble learning to increase the model accuracy. Climate datasets are obtained from 75 weather stations across New South Wales and Australian Capital Territory areas of Australia. The results show that the proposed method reached a detection rate up to 92.55%.","PeriodicalId":12033,"journal":{"name":"Environ. Model. Softw.","volume":"6 1","pages":"105724"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environ. Model. Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The weather phenomenon of frost poses great threats to agriculture. As recent frost prediction methods are based on on-site historical data and sensors, extra development and deployment time are required for data collection in any new site. The aim of this article is to eliminate the dependency on on-site historical data and sensors for frost prediction methods. In this article, a frost prediction method based on spatial interpolation is proposed. The models use climate data from existing weather stations, digital elevation models surveys, and normalized difference vegetation index data to estimate a target site's next hour minimum temperature. The proposed method utilizes ensemble learning to increase the model accuracy. Climate datasets are obtained from 75 weather stations across New South Wales and Australian Capital Territory areas of Australia. The results show that the proposed method reached a detection rate up to 92.55%.
基于有限局部数据的人工神经网络的智能空间插值霜冻预测方法
霜冻的天气现象对农业造成很大威胁。由于最近的霜冻预测方法是基于现场历史数据和传感器,因此在任何新站点收集数据都需要额外的开发和部署时间。本文的目的是消除对现场历史数据和传感器霜冻预测方法的依赖。提出了一种基于空间插值的霜冻预报方法。这些模型使用来自现有气象站的气候数据、数字高程模型调查和归一化植被指数差异数据来估计目标地点下一小时的最低温度。该方法利用集成学习来提高模型的精度。气候数据集来自澳大利亚新南威尔士州和澳大利亚首都直辖区的75个气象站。结果表明,该方法的检测率高达92.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信