{"title":"Atmospheric turbidity and transmittance of solar radiation in Riyadh, Saudi Arabia","authors":"Mohammad S. El-Shobokshy, Yaseen G. Al-Saedi","doi":"10.1016/0957-1272(93)90017-Z","DOIUrl":null,"url":null,"abstract":"<div><p>During the last two decades, the urban areas in the city of Riyadh—the capital of Saudi Arabia—were increasing at an exceptionally high rate through a series of development plans. The major plans had been completed by the end of 1982. Some other big utility projects were started and completed during 1987. As a consequence, the air quality has deteriorated markedly and air pollution episodes recorded during these activities showed that particulates were present in the atmosphere at high concentrations. Later in January 1991 the Gulf war started and the firing of the oil fields in Kuwait soon followed. It was estimated that soot particulates were emitted at a rate of 600 ton d<sup>−1</sup> along with high rates of other gases. This event has led to significant air quality and visibility problems.</p><p>Direct normal solar radiation has been measured during the summer months of July and August which were characterized by very dry and cloudless weather for the period between 1982 and 1992. A year-to-year trend of the transmittance of direct normal solar irradiance was then determined.</p><p>The atmospheric fine aerosol (<2 μm diameter) loading data during the same period were used to establish a correlation between the aerosol concentration and the extinction coefficient.</p><p>The total horizontal and direct normal solar radiation measurements during some days when the dark smoke emitted from the oil field fires in Kuwait were passing over Riyadh are presented. The reduction in solar irradiation reflects the intensity of dark smoke at a distance of 500 km from Kuwait.</p></div>","PeriodicalId":100140,"journal":{"name":"Atmospheric Environment. Part B. Urban Atmosphere","volume":"27 4","pages":"Pages 401-411"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0957-1272(93)90017-Z","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment. Part B. Urban Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095712729390017Z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
During the last two decades, the urban areas in the city of Riyadh—the capital of Saudi Arabia—were increasing at an exceptionally high rate through a series of development plans. The major plans had been completed by the end of 1982. Some other big utility projects were started and completed during 1987. As a consequence, the air quality has deteriorated markedly and air pollution episodes recorded during these activities showed that particulates were present in the atmosphere at high concentrations. Later in January 1991 the Gulf war started and the firing of the oil fields in Kuwait soon followed. It was estimated that soot particulates were emitted at a rate of 600 ton d−1 along with high rates of other gases. This event has led to significant air quality and visibility problems.
Direct normal solar radiation has been measured during the summer months of July and August which were characterized by very dry and cloudless weather for the period between 1982 and 1992. A year-to-year trend of the transmittance of direct normal solar irradiance was then determined.
The atmospheric fine aerosol (<2 μm diameter) loading data during the same period were used to establish a correlation between the aerosol concentration and the extinction coefficient.
The total horizontal and direct normal solar radiation measurements during some days when the dark smoke emitted from the oil field fires in Kuwait were passing over Riyadh are presented. The reduction in solar irradiation reflects the intensity of dark smoke at a distance of 500 km from Kuwait.