{"title":"Some theoretical properties of Feng-Schnabel algorithm for block bordered nonlinear systems","authors":"G. Zanghirati","doi":"10.1080/10556789908805741","DOIUrl":null,"url":null,"abstract":"Large and sparse nonlinear systems arise in many areas of science and technology, very often as a core process for the model of a real world problem. Newton-like approaches to their solution imply the computation of a (possibly approximated) Jacobian: in the case of block bordered systems this results in a matrix with disjoint square blocks on the main diagonal, plus a final set of rows and columns. This sparsity class allows to develop multistage Newton-like methods (with inner and outer iterations) that are very suitable for a parallel implementation ou multiprocessors computers. Recently, Feng and Schnabel proposed an algorithm which is actually the state of the art in this field. In this paper we analyze in depth important theoretical properties of the steps generated by the Feng-Schnabel algorithm. Then we study a cheap modification that gives an improvement of the direction properties, allowing a global convergence result, as well as the extension of the convergence to a broader class of algorithms,...","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"45 1","pages":"783-801"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805741","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Large and sparse nonlinear systems arise in many areas of science and technology, very often as a core process for the model of a real world problem. Newton-like approaches to their solution imply the computation of a (possibly approximated) Jacobian: in the case of block bordered systems this results in a matrix with disjoint square blocks on the main diagonal, plus a final set of rows and columns. This sparsity class allows to develop multistage Newton-like methods (with inner and outer iterations) that are very suitable for a parallel implementation ou multiprocessors computers. Recently, Feng and Schnabel proposed an algorithm which is actually the state of the art in this field. In this paper we analyze in depth important theoretical properties of the steps generated by the Feng-Schnabel algorithm. Then we study a cheap modification that gives an improvement of the direction properties, allowing a global convergence result, as well as the extension of the convergence to a broader class of algorithms,...
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.