{"title":"A 3D Air-to-Air Wideband Non-Stationary Channel Model of UAV Communications","authors":"Zhangfeng Ma, B. Ai, R. He, Z. Zhong","doi":"10.1109/VTCFall.2019.8891290","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) communications are considered as a promising technology in various areas. In this paper, a three-dimensional (3D) non- stationary geometry-based stochastic model (GBSM) is proposed for UAV air-to- air (A2A) communication environments. The proposed GBSM considers not only both the ground surface and roadside reflections, but also the arbitrary trajectories of both UAV terminals. Based on the proposed model, some important statistical properties such as time- variant time-frequency correlation function and the Doppler power spectrum are derived and analyzed. Finally, numerical results show that a variation of the velocity and moving direction of the UAV has major impacts on the statistical properties of the radio channels, which indicates its usefulness for the performance analysis of UAV communication systems under non- stationary conditions.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Unmanned aerial vehicles (UAVs) communications are considered as a promising technology in various areas. In this paper, a three-dimensional (3D) non- stationary geometry-based stochastic model (GBSM) is proposed for UAV air-to- air (A2A) communication environments. The proposed GBSM considers not only both the ground surface and roadside reflections, but also the arbitrary trajectories of both UAV terminals. Based on the proposed model, some important statistical properties such as time- variant time-frequency correlation function and the Doppler power spectrum are derived and analyzed. Finally, numerical results show that a variation of the velocity and moving direction of the UAV has major impacts on the statistical properties of the radio channels, which indicates its usefulness for the performance analysis of UAV communication systems under non- stationary conditions.