Gepeng Zhang, Jiaming Yan, Hanqing Chen, Hong Hong, Heng Zhao, Chen Gu, Xiaohua Zhu, Changzhi Li
{"title":"Phase-demodulation based Human Identification for Vital-SAR-Imaging in Pure FMCW Mode","authors":"Gepeng Zhang, Jiaming Yan, Hanqing Chen, Hong Hong, Heng Zhao, Chen Gu, Xiaohua Zhu, Changzhi Li","doi":"10.1109/mwsym.2019.8700958","DOIUrl":null,"url":null,"abstract":"Identifying vital-related signals from human targets in a single synthetic aperture radar (SAR) image processing is important but challenging for localization and rescue applications. Recently, hybrid-mode SAR was reported for human identification and localization by alternating a radar in both the interferometry and frequency-modulated continuous-wave (FMCW) modes. However, it increased system complexity and required doubling the scanning efforts. In this paper, a novel phase-demodulation based vital-SAR-imaging method with a portable radar in pure FMCW mode is proposed. The solution can identify human targets from the SAR image by extracting high-resolution breathing signals on a moving platform. Experiments have been con-ducted to demonstrate the accuracy and robustness of the pro-posed method.","PeriodicalId":6720,"journal":{"name":"2019 IEEE MTT-S International Microwave Symposium (IMS)","volume":"92 1","pages":"152-155"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mwsym.2019.8700958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Identifying vital-related signals from human targets in a single synthetic aperture radar (SAR) image processing is important but challenging for localization and rescue applications. Recently, hybrid-mode SAR was reported for human identification and localization by alternating a radar in both the interferometry and frequency-modulated continuous-wave (FMCW) modes. However, it increased system complexity and required doubling the scanning efforts. In this paper, a novel phase-demodulation based vital-SAR-imaging method with a portable radar in pure FMCW mode is proposed. The solution can identify human targets from the SAR image by extracting high-resolution breathing signals on a moving platform. Experiments have been con-ducted to demonstrate the accuracy and robustness of the pro-posed method.