Generating heuristics for novice players

F. Silva, Aaron Isaksen, J. Togelius, Andy Nealen
{"title":"Generating heuristics for novice players","authors":"F. Silva, Aaron Isaksen, J. Togelius, Andy Nealen","doi":"10.1109/CIG.2016.7860407","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating compact sub-optimal game-playing heuristics that can be understood and easily executed by novices. In particular, we seek to find heuristics that can lead to good play while at the same time be expressed as fast and frugal trees or short decision lists. This has applications in automatically generating tutorials and instructions for playing games, but also in analyzing game design and measuring game depth. We use the classic game Blackjack as a testbed, and compare condition induction with the RIPPER algorithm, exhaustive-greedy search in statement space, genetic programming and axis-aligned search. We find that all of these methods can find compact well-playing heuristics under the given constraints, with axis-aligned search performing particularly well.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"14 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We consider the problem of generating compact sub-optimal game-playing heuristics that can be understood and easily executed by novices. In particular, we seek to find heuristics that can lead to good play while at the same time be expressed as fast and frugal trees or short decision lists. This has applications in automatically generating tutorials and instructions for playing games, but also in analyzing game design and measuring game depth. We use the classic game Blackjack as a testbed, and compare condition induction with the RIPPER algorithm, exhaustive-greedy search in statement space, genetic programming and axis-aligned search. We find that all of these methods can find compact well-playing heuristics under the given constraints, with axis-aligned search performing particularly well.
为新手玩家生成启发式信息
我们考虑的问题是生成紧凑的次优博弈启发式,可以被新手理解和容易执行。特别是,我们试图找到能够带来良好游戏体验的启发式方法,同时将其表达为快速且节俭的树或简短的决策列表。这不仅适用于自动生成游戏教程和指导,也适用于分析游戏设计和衡量游戏深度。以经典游戏Blackjack为实验平台,将条件归纳法与RIPPER算法、语句空间的穷举贪婪搜索、遗传规划和轴对齐搜索进行了比较。我们发现,在给定的约束条件下,所有这些方法都可以找到紧凑的启发式算法,其中轴对齐搜索表现得特别好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信