Faster Walsh-Hadamard Transform and Matrix Multiplication over Finite Fields using Lookup Tables

Josh Alman
{"title":"Faster Walsh-Hadamard Transform and Matrix Multiplication over Finite Fields using Lookup Tables","authors":"Josh Alman","doi":"10.48550/arXiv.2211.04643","DOIUrl":null,"url":null,"abstract":"We use lookup tables to design faster algorithms for important algebraic problems over finite fields. These faster algorithms, which only use arithmetic operations and lookup table operations, may help to explain the difficulty of determining the complexities of these important problems. Our results over a constant-sized finite field are as follows. The Walsh-Hadamard transform of a vector of length $N$ can be computed using $O(N \\log N / \\log \\log N)$ bit operations. This generalizes to any transform defined as a Kronecker power of a fixed matrix. By comparison, the Fast Walsh-Hadamard transform (similar to the Fast Fourier transform) uses $O(N \\log N)$ arithmetic operations, which is believed to be optimal up to constant factors. Any algebraic algorithm for multiplying two $N \\times N$ matrices using $O(N^\\omega)$ operations can be converted into an algorithm using $O(N^\\omega / (\\log N)^{\\omega/2 - 1})$ bit operations. For example, Strassen's algorithm can be converted into an algorithm using $O(N^{2.81} / (\\log N)^{0.4})$ bit operations. It remains an open problem with practical implications to determine the smallest constant $c$ such that Strassen's algorithm can be implemented to use $c \\cdot N^{2.81} + o(N^{2.81})$ arithmetic operations; using a lookup table allows one to save a super-constant factor in bit operations.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"246 1","pages":"137-144"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.04643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use lookup tables to design faster algorithms for important algebraic problems over finite fields. These faster algorithms, which only use arithmetic operations and lookup table operations, may help to explain the difficulty of determining the complexities of these important problems. Our results over a constant-sized finite field are as follows. The Walsh-Hadamard transform of a vector of length $N$ can be computed using $O(N \log N / \log \log N)$ bit operations. This generalizes to any transform defined as a Kronecker power of a fixed matrix. By comparison, the Fast Walsh-Hadamard transform (similar to the Fast Fourier transform) uses $O(N \log N)$ arithmetic operations, which is believed to be optimal up to constant factors. Any algebraic algorithm for multiplying two $N \times N$ matrices using $O(N^\omega)$ operations can be converted into an algorithm using $O(N^\omega / (\log N)^{\omega/2 - 1})$ bit operations. For example, Strassen's algorithm can be converted into an algorithm using $O(N^{2.81} / (\log N)^{0.4})$ bit operations. It remains an open problem with practical implications to determine the smallest constant $c$ such that Strassen's algorithm can be implemented to use $c \cdot N^{2.81} + o(N^{2.81})$ arithmetic operations; using a lookup table allows one to save a super-constant factor in bit operations.
更快的沃尔什-阿达玛变换和矩阵乘法在有限的领域使用查找表
我们使用查找表来为有限域上重要的代数问题设计更快的算法。这些更快的算法只使用算术运算和查找表运算,可能有助于解释确定这些重要问题的复杂性的困难。我们在一个固定大小的有限域上得到的结果如下。长度为$N$的矢量的Walsh-Hadamard变换可以使用$O(N \log N / \log \log N)$位操作来计算。这可以推广到任何定义为固定矩阵的克罗内克幂的变换。相比之下,快速沃尔什-阿达玛变换(类似于快速傅立叶变换)使用$O(N \log N)$算术运算,这被认为是最优的常数因子。使用$O(N^\omega)$操作相乘两个$N \times N$矩阵的任何代数算法都可以转换为使用$O(N^\omega / (\log N)^{\omega/2 - 1})$位操作的算法。例如,Strassen算法可以通过$O(N^{2.81} / (\log N)^{0.4})$位操作转换为算法。它仍然是一个开放的问题,具有实际意义,以确定最小常数$c$,使Strassen的算法可以实现使用$c \cdot N^{2.81} + o(N^{2.81})$算术运算;使用查找表可以在位操作中节省一个超常数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信