Comparison of Classification Algorithms Like Neural Network (NN), Support Vector Machine (SVM), and Naïve Theorem (NB) and Back Propagation TECHNIQUE for Automatic Email Classification

Dr. V. Khanna, Dr. R. Udayakumar
{"title":"Comparison of Classification Algorithms Like Neural Network (NN), Support Vector Machine (SVM), and Naïve Theorem (NB) and Back Propagation TECHNIQUE for Automatic Email Classification","authors":"Dr. V. Khanna, Dr. R. Udayakumar","doi":"10.29333/EJAC/2018146","DOIUrl":null,"url":null,"abstract":"This paper proposes a replacement email classification model using a supervised technique of multi-layer neural network to implement back propagation technique. Backpropagation adjusts the loads in Associate in Nursing quantity proportional to the error for the given unit (hidden or output) increased by the weight and its input. The coaching method continues till some termination criterion, like a predefined mean-squared error, or a most range of interations. Email has become one altogether the fastest and therefore the best styles of communication. However, the increase of email users with high volume of email messages might result in un-structured mail boxes, email congestion, email overload, unprioritised email messages, and resulted at intervals the dramatic increase of email classification management tools throughout the past few years. Our aim is to the use of empirical Analysis to select out Associate in Nursing optimum, novel assortment of choices of a users’ email contents that modify the speedy detection of the foremost important words, phrases in emails.","PeriodicalId":11690,"journal":{"name":"Eurasian Journal of Analytical Chemistry","volume":"47 1","pages":"791-797"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29333/EJAC/2018146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a replacement email classification model using a supervised technique of multi-layer neural network to implement back propagation technique. Backpropagation adjusts the loads in Associate in Nursing quantity proportional to the error for the given unit (hidden or output) increased by the weight and its input. The coaching method continues till some termination criterion, like a predefined mean-squared error, or a most range of interations. Email has become one altogether the fastest and therefore the best styles of communication. However, the increase of email users with high volume of email messages might result in un-structured mail boxes, email congestion, email overload, unprioritised email messages, and resulted at intervals the dramatic increase of email classification management tools throughout the past few years. Our aim is to the use of empirical Analysis to select out Associate in Nursing optimum, novel assortment of choices of a users’ email contents that modify the speedy detection of the foremost important words, phrases in emails.
神经网络(NN)、支持向量机(SVM)、Naïve定理(NB)和反向传播技术在电子邮件自动分类中的比较
本文提出了一种利用多层神经网络监督技术实现反向传播的替代电子邮件分类模型。反向传播根据给定单位(隐藏或输出)的误差与权重及其输入的增加成正比,调整护理量中的关联负载。指导方法一直持续到达到终止标准,比如预定义的均方误差,或者最大范围的交互。电子邮件已经成为最快的沟通方式之一,因此也是最好的沟通方式。然而,随着电子邮件用户的增加,大量的电子邮件信息可能导致无结构的邮箱,电子邮件拥塞,电子邮件过载,无优先级的电子邮件信息,并导致隔一段时间的电子邮件分类管理工具在过去几年中急剧增加。我们的目标是使用实证分析来选择护理人员的最佳,新颖的用户电子邮件内容选择组合,以修改电子邮件中最重要的单词,短语的快速检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信