Research on Applicability of Laser Ablation Propulsion to Space Debris Removal by Simulations

S. Yoo, Seung-Min Lee
{"title":"Research on Applicability of Laser Ablation Propulsion to Space Debris Removal by Simulations","authors":"S. Yoo, Seung-Min Lee","doi":"10.9766/kimst.2022.25.2.169","DOIUrl":null,"url":null,"abstract":"Laser ablation propulsion(LAP) is the method to create impulse by laser ablation. It can be used to deorbit the space debris(SD), as its long-range property and versatility on any material. In this paper, we find out several requirements of the LAP system(LAPS) to deorbit the SD by simple numerical calculations of the SD orbit and laser beam flux. As a result, minimum operable altitude angle turned out to be a crucial variable to the LAPS. Moreover, if minimum operable altitude angle is 10°, and if the minimum distance between the LAPS and the SD is below 450 km, 1 m/s2 is sufficient to deorbit the SD by once. With 18 kJ/3 ns pulsed laser and cube shaped 100 kg SD, 1 m/s2 acceleration can be achieved by increasing the pulse repetition rate over 34~53 Hz, depending on the size of the SD. This capability could compare with the conceptual design of the Japan Establishment for a Power-laser Community Harvest(J-EPoCH) facility, which include 8 kJ, 5 PW@100 Hz laser.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2022.25.2.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laser ablation propulsion(LAP) is the method to create impulse by laser ablation. It can be used to deorbit the space debris(SD), as its long-range property and versatility on any material. In this paper, we find out several requirements of the LAP system(LAPS) to deorbit the SD by simple numerical calculations of the SD orbit and laser beam flux. As a result, minimum operable altitude angle turned out to be a crucial variable to the LAPS. Moreover, if minimum operable altitude angle is 10°, and if the minimum distance between the LAPS and the SD is below 450 km, 1 m/s2 is sufficient to deorbit the SD by once. With 18 kJ/3 ns pulsed laser and cube shaped 100 kg SD, 1 m/s2 acceleration can be achieved by increasing the pulse repetition rate over 34~53 Hz, depending on the size of the SD. This capability could compare with the conceptual design of the Japan Establishment for a Power-laser Community Harvest(J-EPoCH) facility, which include 8 kJ, 5 PW@100 Hz laser.
激光烧蚀推进在空间碎片清除中的适用性仿真研究
激光烧蚀推进(LAP)是一种利用激光烧蚀产生脉冲的方法。由于其远程特性和在任何材料上的通用性,它可用于空间碎片脱轨。本文通过对SD轨道和激光束通量的简单数值计算,得出了LAP系统(LAPS)对SD脱轨的几个要求。因此,最小可操作高度角是影响LAPS的关键变量。此外,如果最小可操作高度角为10°,并且lap与SD之间的最小距离低于450 km,则1m /s2足以使SD脱轨一次。在18 kJ/3 ns的脉冲激光和100 kg的立方体SD下,根据SD的大小,在34~53 Hz范围内增加脉冲重复频率可以实现1 m/s2的加速度。这种能力可以与日本建立的功率激光社区收获(J-EPoCH)设施的概念设计相比较,该设施包括8千焦,5 PW@100赫兹激光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信