S. Otieno, Emanuel Ngumbi, Christine Odhiambo Nyang’aya, Jagi Gakunju
{"title":"Study of a Green House Gas Induced Effects on Transfer Factor of Micronutrients in a Nature Reserve","authors":"S. Otieno, Emanuel Ngumbi, Christine Odhiambo Nyang’aya, Jagi Gakunju","doi":"10.11648/J.AJEP.20211001.14","DOIUrl":null,"url":null,"abstract":"Increasing Carbon dioxide in atmosphere affects nutrition due to carbon nutrient penalty or carbon fertilization. Per capita consumption of micronutrients get affected, leading to silent hunger. This study looks at the effect of the greenhouse gasses especially carbon dioxide on micronutrient up take by vegetation and on soil as proxy-indicator of effects in food chain. Fifty soil samples 250 grams each and fourty vegetation samples 100 grams each were taken in georeferenced sites in AFEW in Langata Ecosystem, along a predetermined transects. The samples were put in Ziplocs and transported to Kabete Laboratories and analyzed by Inductively Coupled Plasma Atomic Emission Spectrometry Optima 8000, Perkin Elmer. Micronutrients levels in soil were compared with those in vegetation as away asses possible effects of carbon dioxide on uptake of the micronutrients by vegetation. The micronutrients were measured in mg/gm. The results show that levels of most of the micronutrients in soil and vegetation shoots varied. No Zinc was detected both in soil and vegetation in all transects. The level of all micronutrients varied between the soil and vegetation but generally much lower in vegetation. The transfer factor (TF) of sodium, magnesium, mercury and Lead were > 1, Zinc, Aluminium, Copper, and Cobalt were <1 suggesting possible GHG effect. It can be concluded that the Transfer Factor in Aluminium, Zinc, Magnesium, Cobalt and cupper in vegetation is below 1 possibly due to effect of Carbon Dioxide.","PeriodicalId":7549,"journal":{"name":"American Journal of Environmental Protection","volume":"285 1","pages":"30"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJEP.20211001.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing Carbon dioxide in atmosphere affects nutrition due to carbon nutrient penalty or carbon fertilization. Per capita consumption of micronutrients get affected, leading to silent hunger. This study looks at the effect of the greenhouse gasses especially carbon dioxide on micronutrient up take by vegetation and on soil as proxy-indicator of effects in food chain. Fifty soil samples 250 grams each and fourty vegetation samples 100 grams each were taken in georeferenced sites in AFEW in Langata Ecosystem, along a predetermined transects. The samples were put in Ziplocs and transported to Kabete Laboratories and analyzed by Inductively Coupled Plasma Atomic Emission Spectrometry Optima 8000, Perkin Elmer. Micronutrients levels in soil were compared with those in vegetation as away asses possible effects of carbon dioxide on uptake of the micronutrients by vegetation. The micronutrients were measured in mg/gm. The results show that levels of most of the micronutrients in soil and vegetation shoots varied. No Zinc was detected both in soil and vegetation in all transects. The level of all micronutrients varied between the soil and vegetation but generally much lower in vegetation. The transfer factor (TF) of sodium, magnesium, mercury and Lead were > 1, Zinc, Aluminium, Copper, and Cobalt were <1 suggesting possible GHG effect. It can be concluded that the Transfer Factor in Aluminium, Zinc, Magnesium, Cobalt and cupper in vegetation is below 1 possibly due to effect of Carbon Dioxide.