Uniform convergence of an upwind discontinuous Galerkin method for solving scaled discrete-ordinate radiative transfer equations with isotropic scattering kernel
{"title":"Uniform convergence of an upwind discontinuous Galerkin method for solving scaled discrete-ordinate radiative transfer equations with isotropic scattering kernel","authors":"Qiwei Sheng, C. Hauck","doi":"10.1090/MCOM/3670","DOIUrl":null,"url":null,"abstract":"We present an error analysis for the discontinuous Galerkin method applied to the discrete-ordinate discretization of the steady-state radiative transfer equation. Under some mild assumptions, we show that the DG method converges uniformly with respect to a scaling parameter $\\varepsilon$ which characterizes the strength of scattering in the system. However, the rate is not optimal and can be polluted by the presence of boundary layers. In one-dimensional slab geometries, we demonstrate optimal convergence when boundary layers are not present and analyze a simple strategy for balance interior and boundary layer errors. Some numerical tests are also provided in this reduced setting.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present an error analysis for the discontinuous Galerkin method applied to the discrete-ordinate discretization of the steady-state radiative transfer equation. Under some mild assumptions, we show that the DG method converges uniformly with respect to a scaling parameter $\varepsilon$ which characterizes the strength of scattering in the system. However, the rate is not optimal and can be polluted by the presence of boundary layers. In one-dimensional slab geometries, we demonstrate optimal convergence when boundary layers are not present and analyze a simple strategy for balance interior and boundary layer errors. Some numerical tests are also provided in this reduced setting.