A. Pienaar, L. J. V. Rooyen, H. Bissett, J. Karger‐Kocsis
{"title":"Effect of graphene content on thermal degradation of PTFE","authors":"A. Pienaar, L. J. V. Rooyen, H. Bissett, J. Karger‐Kocsis","doi":"10.18362/BJTA.V6.I2.12","DOIUrl":null,"url":null,"abstract":"In this work we report on the effect of graphene nanoplatelet inclusion on the thermal degradation of polytetrafuoroethylene (PTFE) in nitrogen. PTFE/graphene nanocomposites, containing up to 4 vol% graphene were produced by solution-assisted blending followed by sintering. Decomposition parameters were determined by direct fitting of the Sestak-Berggren equation to the experimental data. It was found that the activation energy of thermal decomposition increased up to as much as 20% and was practically independent of the graphene content in the studied PTFE/graphene nanocomposites. This was attributed to the tortuosity of the graphene layers hampering the diffusion of the gaseous decomposition products.","PeriodicalId":9282,"journal":{"name":"Brazilian Journal of Thermal Analysis","volume":"52 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18362/BJTA.V6.I2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work we report on the effect of graphene nanoplatelet inclusion on the thermal degradation of polytetrafuoroethylene (PTFE) in nitrogen. PTFE/graphene nanocomposites, containing up to 4 vol% graphene were produced by solution-assisted blending followed by sintering. Decomposition parameters were determined by direct fitting of the Sestak-Berggren equation to the experimental data. It was found that the activation energy of thermal decomposition increased up to as much as 20% and was practically independent of the graphene content in the studied PTFE/graphene nanocomposites. This was attributed to the tortuosity of the graphene layers hampering the diffusion of the gaseous decomposition products.