Non-Parametric Bootstrap Detection of Availability Service Level Objective Violations in Cloud Storage

M. Naldi
{"title":"Non-Parametric Bootstrap Detection of Availability Service Level Objective Violations in Cloud Storage","authors":"M. Naldi","doi":"10.23919/TMA.2018.8506563","DOIUrl":null,"url":null,"abstract":"Service quality commitments in cloud service provisioning are typically described in Service Level Agreements (SLA). Service availability is always a major parameter to be included in such SLAs. and the cloud provider is bounded to guarantee a minimum availability value, for which current cloud monitoring systems employ a naive estimator. In this paper a new estimation method is proposed for service availability, which is based on the bootstrap technique and employs a non-parametric statistical hypothesis test. Through Monte Carlo simulation, the method is shown to be much more accurate than the naive one under three stochastic models for the durations of operating and outage periods, exhibiting a Type I error probability lower than 1 % in most cases, while the naive estimator yields error probabilities around 40%.","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"6 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Service quality commitments in cloud service provisioning are typically described in Service Level Agreements (SLA). Service availability is always a major parameter to be included in such SLAs. and the cloud provider is bounded to guarantee a minimum availability value, for which current cloud monitoring systems employ a naive estimator. In this paper a new estimation method is proposed for service availability, which is based on the bootstrap technique and employs a non-parametric statistical hypothesis test. Through Monte Carlo simulation, the method is shown to be much more accurate than the naive one under three stochastic models for the durations of operating and outage periods, exhibiting a Type I error probability lower than 1 % in most cases, while the naive estimator yields error probabilities around 40%.
云存储中可用性服务水平目标违规的非参数自举检测
云服务供应中的服务质量承诺通常在服务水平协议(SLA)中描述。服务可用性始终是此类sla中要包含的一个主要参数。并且云提供商是有界限的,以保证最小可用性值,目前的云监控系统对此使用了一个幼稚的估计器。本文提出了一种新的服务可用性估计方法,该方法基于自举技术,采用非参数统计假设检验。通过蒙特卡罗模拟,在三种随机模型下,该方法对运行和停运时间的估计精度比朴素估计法高得多,在大多数情况下,I型误差概率低于1%,而朴素估计法的误差概率在40%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信