Un modèle semi-paramétrique pour variables aléatoires hilbertiennes

Jacques Dauxois , Louis Ferré , Anne-Françoise Yao
{"title":"Un modèle semi-paramétrique pour variables aléatoires hilbertiennes","authors":"Jacques Dauxois ,&nbsp;Louis Ferré ,&nbsp;Anne-Françoise Yao","doi":"10.1016/S0764-4442(01)02163-2","DOIUrl":null,"url":null,"abstract":"<div><p>This Note deals with a semi-parametric model for Hilbertian random variables. The model is said semi-parametric by analogy with the finite dimensional case since the model involves a composition of any measurable mapping with a linear mapping which represents the “parametric” part. Under mild conditions, we derive a way for estimating this linear component in a particular case. We show that this method is actually a generalization of Li's Sliced Inverse Regression. However, in the Hilbertian context, SIR requires some adaptations of the estimation procedure and results concerning the consistency of the proposed estimates are given.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 947-952"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02163-2","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This Note deals with a semi-parametric model for Hilbertian random variables. The model is said semi-parametric by analogy with the finite dimensional case since the model involves a composition of any measurable mapping with a linear mapping which represents the “parametric” part. Under mild conditions, we derive a way for estimating this linear component in a particular case. We show that this method is actually a generalization of Li's Sliced Inverse Regression. However, in the Hilbertian context, SIR requires some adaptations of the estimation procedure and results concerning the consistency of the proposed estimates are given.

希尔伯特随机变量的半参数模型
本文讨论希尔伯特随机变量的半参数模型。与有限维情况类似,该模型被称为半参数模型,因为该模型涉及到任何可测量映射与表示“参数”部分的线性映射的组合。在温和的条件下,我们推导出了一种在特定情况下估计这个线性分量的方法。我们证明了这种方法实际上是李的切片逆回归的推广。然而,在Hilbertian上下文中,SIR要求对估计过程进行一些调整,并给出了有关建议估计一致性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信