{"title":"Liver cancer classification via deep hybrid model from CT image with improved texture feature set and fuzzy clustering based segmentation","authors":"Vinnakota Sai Durga Tejaswi, V. Rachapudi","doi":"10.3233/web-230042","DOIUrl":null,"url":null,"abstract":"One of the leading causes of death for people worldwide is liver cancer. Manually identifying the cancer tissue in the current situation is a challenging and time-consuming task. Assessing the tumor load, planning therapies, making predictions, and tracking the clinical response can all be done using the segmentation of liver lesions in Computed Tomography (CT) scans. In this paper we propose a new technique for liver cancer classification with CT image. This method consists of four stages like pre-processing, segmentation, feature extraction and classification. In the initial stage the input image will be pre processed for the quality enhancement. This preprocessed output will be subjected to the segmentation phase; here improved deep fuzzy clustering technique will be applied for image segmentation. Subsequently, the segmented image will be the input of the feature extraction phase, where the extracted features are named as Improved Gabor Transitional Pattern, Grey-Level Co-occurrence Matrix (GLCM), Statistical features and Convolutional Neural Network (CNN) based feature. Finally the extracted features are subjected to the classification stage, here the two types of classifiers used for classification that is Bi-GRU and Deep Maxout. In this phase we will apply the Crossover mutated COOT optimization (CMCO) for tuning the weights, So that we will improve the quality of the image. This proposed technique, present the best accuracy of disease identification. The CMCO gained the accuracy of 95.58%, which is preferable than AO = 92.16%, COA = 89.38%, TSA = 88.05%, AOA = 92.05% and COOT = 91.95%, respectively.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-230042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
One of the leading causes of death for people worldwide is liver cancer. Manually identifying the cancer tissue in the current situation is a challenging and time-consuming task. Assessing the tumor load, planning therapies, making predictions, and tracking the clinical response can all be done using the segmentation of liver lesions in Computed Tomography (CT) scans. In this paper we propose a new technique for liver cancer classification with CT image. This method consists of four stages like pre-processing, segmentation, feature extraction and classification. In the initial stage the input image will be pre processed for the quality enhancement. This preprocessed output will be subjected to the segmentation phase; here improved deep fuzzy clustering technique will be applied for image segmentation. Subsequently, the segmented image will be the input of the feature extraction phase, where the extracted features are named as Improved Gabor Transitional Pattern, Grey-Level Co-occurrence Matrix (GLCM), Statistical features and Convolutional Neural Network (CNN) based feature. Finally the extracted features are subjected to the classification stage, here the two types of classifiers used for classification that is Bi-GRU and Deep Maxout. In this phase we will apply the Crossover mutated COOT optimization (CMCO) for tuning the weights, So that we will improve the quality of the image. This proposed technique, present the best accuracy of disease identification. The CMCO gained the accuracy of 95.58%, which is preferable than AO = 92.16%, COA = 89.38%, TSA = 88.05%, AOA = 92.05% and COOT = 91.95%, respectively.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]