Maps on Grassmann spaces preserving the minimal principal angle

IF 0.5 Q3 MATHEMATICS
Peter Šemrl
{"title":"Maps on Grassmann spaces preserving the minimal principal angle","authors":"Peter Šemrl","doi":"10.1007/s44146-023-00093-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>n</i> be a positive integer and <i>H</i> a Hilbert space. The description of the general form of bijective maps on the set of <i>n</i>-dimensional subspaces of <i>H</i> preserving the maximal principal angle has been obtained recently. This is a generalization of Wigner’s unitary-antiunitary theorem. In this paper we will obtain another extension of Wigner’s theorem in which the maximal principal angle is replaced by the minimal one. Moreover, in this case we do not need the bijectivity assumption.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 1-2","pages":"109 - 122"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00093-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00093-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let n be a positive integer and H a Hilbert space. The description of the general form of bijective maps on the set of n-dimensional subspaces of H preserving the maximal principal angle has been obtained recently. This is a generalization of Wigner’s unitary-antiunitary theorem. In this paper we will obtain another extension of Wigner’s theorem in which the maximal principal angle is replaced by the minimal one. Moreover, in this case we do not need the bijectivity assumption.

格拉斯曼空间上保留最小主角的映射
设 n 为正整数,H 为希尔伯特空间。最近获得了关于 H 的 n 维子空间集合上保留最大主角的双射映射的一般形式的描述。这是维格纳单元反单元定理的推广。在本文中,我们将得到维格纳定理的另一个扩展,即用最小主角代替最大主角。此外,在这种情况下,我们不需要双射性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信