Combinatorial Approach to Milnor Invariants of Welded Links

IF 0.8 3区 数学 Q2 MATHEMATICS
H. A. Miyazawa, K. Wada, A. Yasuhara
{"title":"Combinatorial Approach to Milnor Invariants of Welded Links","authors":"H. A. Miyazawa, K. Wada, A. Yasuhara","doi":"10.1307/mmj/20205905","DOIUrl":null,"url":null,"abstract":"For a classical link, Milnor defined a family of isotopy invariants, called Milnor $\\overline{\\mu}$-invariants. Recently, Chrisman extended Milnor $\\overline{\\mu}$-invariants to welded links by a topological approach. The aim of this paper is to show that Milnor $\\overline{\\mu}$-invariants can be extended to welded links by a combinatorial approach. The proof contains an alternative proof for the invariance of the original $\\overline{\\mu}$-invariants of classical links.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205905","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

For a classical link, Milnor defined a family of isotopy invariants, called Milnor $\overline{\mu}$-invariants. Recently, Chrisman extended Milnor $\overline{\mu}$-invariants to welded links by a topological approach. The aim of this paper is to show that Milnor $\overline{\mu}$-invariants can be extended to welded links by a combinatorial approach. The proof contains an alternative proof for the invariance of the original $\overline{\mu}$-invariants of classical links.
焊接连杆Milnor不变量的组合方法
对于一个经典链,Milnor定义了一个同位素不变量族,称为Milnor $\overline{\mu}$ -不变量。最近,克里斯曼通过拓扑方法将米尔诺$\overline{\mu}$不变量扩展到焊接链路。本文的目的是证明Milnor $\overline{\mu}$ -不变量可以通过组合方法推广到焊接环节。该证明包含了原始的$\overline{\mu}$不变性的替代证明-经典链接的不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信