CoxKnockoff: Controlled feature selection for the Cox model using knockoffs

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Stat Pub Date : 2023-07-31 DOI:10.1002/sta4.607
Daoji Li, Jinzhao Yu, Hui Zhao
{"title":"CoxKnockoff: Controlled feature selection for the Cox model using knockoffs","authors":"Daoji Li, Jinzhao Yu, Hui Zhao","doi":"10.1002/sta4.607","DOIUrl":null,"url":null,"abstract":"Although there is a huge literature on feature selection for the Cox model, none of the existing approaches can control the false discovery rate (FDR) unless the sample size tends to infinity. In addition, there is no formal power analysis of the knockoffs framework for survival data in the literature. To address those issues, in this paper, we propose a novel controlled feature selection approach using knockoffs for the Cox model. We establish that the proposed method enjoys the FDR control in finite samples regardless of the number of covariates. Moreover, under mild regularity conditions, we also show that the power of our method is asymptotically one as sample size tends to infinity. To the best of our knowledge, this is the first formal theoretical result on the power for the knockoffs procedure in the survival setting. Simulation studies confirm that our method has appealing finite-sample performance with desired FDR control and high power. We further demonstrate the performance of our method through a real data example.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"25 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.607","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Although there is a huge literature on feature selection for the Cox model, none of the existing approaches can control the false discovery rate (FDR) unless the sample size tends to infinity. In addition, there is no formal power analysis of the knockoffs framework for survival data in the literature. To address those issues, in this paper, we propose a novel controlled feature selection approach using knockoffs for the Cox model. We establish that the proposed method enjoys the FDR control in finite samples regardless of the number of covariates. Moreover, under mild regularity conditions, we also show that the power of our method is asymptotically one as sample size tends to infinity. To the best of our knowledge, this is the first formal theoretical result on the power for the knockoffs procedure in the survival setting. Simulation studies confirm that our method has appealing finite-sample performance with desired FDR control and high power. We further demonstrate the performance of our method through a real data example.
Cox knockoff:使用仿制品对Cox模型进行控制特征选择
尽管有大量关于Cox模型特征选择的文献,但现有的方法都不能控制错误发现率(FDR),除非样本量趋于无穷大。此外,文献中没有对仿冒品生存数据框架进行正式的功效分析。为了解决这些问题,在本文中,我们提出了一种新的控制特征选择方法,使用Cox模型的仿制品。我们证明,无论协变量的数量如何,所提出的方法在有限样本中都具有FDR控制。此外,在温和的正则性条件下,我们还证明了当样本容量趋于无穷大时,我们的方法的幂函数是渐近的。据我们所知,这是第一个关于生存环境中仿冒程序的能力的正式理论结果。仿真研究证实了该方法具有良好的有限样本性能,具有理想的FDR控制和高功率。我们通过一个真实的数据示例进一步证明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stat
Stat Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍: Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell. Stat is characterised by: • Speed - a high-quality review process that aims to reach a decision within 20 days of submission. • Concision - a maximum article length of 10 pages of text, not including references. • Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images. • Scope - addresses all areas of statistics and interdisciplinary areas. Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信