A 16Gb LPDDR4X SDRAM with an NBTI-tolerant circuit solution, an SWD PMOS GIDL reduction technique, an adaptive gear-down scheme and a metastable-free DQS aligner in a 10nm class DRAM process

K. Chun, Yonggyu Chu, Jin-Seok Heo, Tae-Sung Kim, Soo-Won Kim, Hui-Kap Yang, Mijo Kim, Chang-Kyo Lee, Ju-Hwan Kim, Hyunchul Yoon, Chang-Ho Shin, S. Cha, Hyung-Jin Kim, Young-Sik Kim, Kyung-Soo Kim, Young-Ju Kim, Won-Jun Choi, Daesik Yim, I. Moon, Young-Ju Kim, Junha Lee, Young-Ryeol Choi, Yongmin Kwon, Sung-Won Choi, Jung-Wook Kim, Yoon-Suk Park, W. Kang, Jinil Chung, Seunghyun Kim, Yesin Ryu, Seong-Jin Cho, H. Shin, Hangyun Jung, Sanghyuk Kwon, K. Kang, Jongmyung Lee, Y. Song, Youngjae Kim, Eun-Ah Kim, Kyung-Soo Ha, Kyoung-Ho Kim, S. Hyun, Seung-Bum Ko, J. Choi, Y. Sohn, Kwang-il Park, Seong-Jin Jang
{"title":"A 16Gb LPDDR4X SDRAM with an NBTI-tolerant circuit solution, an SWD PMOS GIDL reduction technique, an adaptive gear-down scheme and a metastable-free DQS aligner in a 10nm class DRAM process","authors":"K. Chun, Yonggyu Chu, Jin-Seok Heo, Tae-Sung Kim, Soo-Won Kim, Hui-Kap Yang, Mijo Kim, Chang-Kyo Lee, Ju-Hwan Kim, Hyunchul Yoon, Chang-Ho Shin, S. Cha, Hyung-Jin Kim, Young-Sik Kim, Kyung-Soo Kim, Young-Ju Kim, Won-Jun Choi, Daesik Yim, I. Moon, Young-Ju Kim, Junha Lee, Young-Ryeol Choi, Yongmin Kwon, Sung-Won Choi, Jung-Wook Kim, Yoon-Suk Park, W. Kang, Jinil Chung, Seunghyun Kim, Yesin Ryu, Seong-Jin Cho, H. Shin, Hangyun Jung, Sanghyuk Kwon, K. Kang, Jongmyung Lee, Y. Song, Youngjae Kim, Eun-Ah Kim, Kyung-Soo Ha, Kyoung-Ho Kim, S. Hyun, Seung-Bum Ko, J. Choi, Y. Sohn, Kwang-il Park, Seong-Jin Jang","doi":"10.1109/ISSCC.2018.8310256","DOIUrl":null,"url":null,"abstract":"High-density and high-speed DRAM requirements have been ever-increasing to achieve a better user experience for mobile systems, by adopting QHD (2560×1440), and higher display resolutions, dual cameras, augmented reality, and advanced driver-assistance systems. LPDDR4X has been the hand-held and mobile memory of choice due to its high speed (5.0Gb/s/pin [1]) and low-power data retention (<0.1mW/Gb [2-3]), as well as reliability due to in-DRAM ECC. The DRAM process continues to scale down to the 10nm era to meet the ever increasing density requirements (LPDDR4X density doubles every two years for flagship smart-phones). However, poor data retention characteristics due to smaller storage capacitances and device issues, such as reliability (NBTI) and leakage (especially core transistors), with the traditional poly-gate and planarbulk technology becomes a primary concern for mobile DRAM. In-DRAM ECC is fully supported by the JEDEC LPDDR4 specification by the introduction of the new masked-write command (MWR; fCCDMW=32fCK), however the area overhead (6.25%), due to the additional parity arrays for a (136, 128) single-error-correction code [4], is currently limiting for mass production in terms of chip cost. This overhead can be mitigated by adopting a scaled technology node that enables a smaller chip size as well as better retention time due to ECC. This paper presents several circuit techniques to maintain LPDDR4X's high speed and low power in a 10nm class process, thereby enabling a cost-effective DRAM design with inDRAM ECC: using (1) an NBTI-tolerant circuit solution that covers whole high-speed circuit regions, (2) a sub-WL driver (SWD) PMOS GIDL-reduction technique ensures stable power recovery, (3) an adaptive IO buffer current gear-down scheme based on user-scenarios, and (4) a metastable-free DQS aligner. Figure 12.2.1 shows the top-level block diagram of the 8Gb/1channel macro, with an in-DRAM ECC using a (136, 128) single-error-correction code, similar to that of previous 20nm designs [2-4].","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"2016 1","pages":"206-208"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

High-density and high-speed DRAM requirements have been ever-increasing to achieve a better user experience for mobile systems, by adopting QHD (2560×1440), and higher display resolutions, dual cameras, augmented reality, and advanced driver-assistance systems. LPDDR4X has been the hand-held and mobile memory of choice due to its high speed (5.0Gb/s/pin [1]) and low-power data retention (<0.1mW/Gb [2-3]), as well as reliability due to in-DRAM ECC. The DRAM process continues to scale down to the 10nm era to meet the ever increasing density requirements (LPDDR4X density doubles every two years for flagship smart-phones). However, poor data retention characteristics due to smaller storage capacitances and device issues, such as reliability (NBTI) and leakage (especially core transistors), with the traditional poly-gate and planarbulk technology becomes a primary concern for mobile DRAM. In-DRAM ECC is fully supported by the JEDEC LPDDR4 specification by the introduction of the new masked-write command (MWR; fCCDMW=32fCK), however the area overhead (6.25%), due to the additional parity arrays for a (136, 128) single-error-correction code [4], is currently limiting for mass production in terms of chip cost. This overhead can be mitigated by adopting a scaled technology node that enables a smaller chip size as well as better retention time due to ECC. This paper presents several circuit techniques to maintain LPDDR4X's high speed and low power in a 10nm class process, thereby enabling a cost-effective DRAM design with inDRAM ECC: using (1) an NBTI-tolerant circuit solution that covers whole high-speed circuit regions, (2) a sub-WL driver (SWD) PMOS GIDL-reduction technique ensures stable power recovery, (3) an adaptive IO buffer current gear-down scheme based on user-scenarios, and (4) a metastable-free DQS aligner. Figure 12.2.1 shows the top-level block diagram of the 8Gb/1channel macro, with an in-DRAM ECC using a (136, 128) single-error-correction code, similar to that of previous 20nm designs [2-4].
一款16Gb LPDDR4X SDRAM,采用耐nbti电路解决方案、SWD PMOS GIDL降低技术、自适应减速方案和无亚稳DQS校准器,采用10nm级DRAM工艺
通过采用QHD (2560×1440)、更高的显示分辨率、双摄像头、增强现实和先进的驾驶员辅助系统,高密度和高速DRAM的需求不断增加,以实现更好的移动系统用户体验。LPDDR4X由于其高速(5.0Gb/s/pin[1])和低功耗数据保留(<0.1mW/Gb[2-3])以及由于dram内ECC的可靠性而成为手持和移动存储器的选择。DRAM工艺继续缩小到10nm时代,以满足不断增长的密度要求(旗舰智能手机的LPDDR4X密度每两年翻一番)。然而,由于较小的存储容量和器件问题,如可靠性(NBTI)和泄漏(特别是核心晶体管),数据保留特性差,与传统的多极和平面体技术一起成为移动DRAM的主要关注点。JEDEC LPDDR4规范通过引入新的掩码写入命令(MWR;fCCDMW=32fCK),然而,由于(136,128)单错误校正码[4]的额外奇偶校验阵列,面积开销(6.25%)目前在芯片成本方面限制了大规模生产。这种开销可以通过采用可缩放的技术节点来减轻,该技术节点可以实现更小的芯片尺寸以及ECC带来的更好的保留时间。本文介绍了几种电路技术,以保持LPDDR4X在10nm级工艺中的高速和低功耗,从而实现具有inDRAM ECC的经济高效的DRAM设计:使用(1)覆盖整个高速电路区域的nbti容忍电路解决方案,(2)子wl驱动器(SWD) PMOS gidl减少技术确保稳定的功率恢复,(3)基于用户场景的自适应IO缓冲电流减速方案,以及(4)无亚稳DQS校准器。图12.2.1显示了8Gb/1channel宏的顶层框图,其中dram内ECC使用(135,128)单错误校正码,类似于以前的20nm设计[2-4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信