Solusi Persamaan Dirac untuk Fermion dengan Model Potensial Penghalang Medan Elektromagnetik

Arista Romadani, E. Rani
{"title":"Solusi Persamaan Dirac untuk Fermion dengan Model Potensial Penghalang Medan Elektromagnetik","authors":"Arista Romadani, E. Rani","doi":"10.20527/flux.v17i2.8105","DOIUrl":null,"url":null,"abstract":"The solution of the Dirac equation in the presence of the electromagnetic field on the one-dimensional barrier potential is studied. The energy spectrum and the eigenfunction of the Dirac equation obtained by solving the Dirac equation and we introduced annihilation and creation operators for the Hamiltonian has an identical form in the harmonic oscillator. Regions I and III separated by a potential barrier characterized by the gap energy with the eigenfunctions as a sinusoidal function, and region II has the form of an exponent function.  We found the eigenfunction involved positive and negative energy moves exponentially when passed through a barrier.","PeriodicalId":52720,"journal":{"name":"JIF Jurnal Ilmu Fisika","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIF Jurnal Ilmu Fisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20527/flux.v17i2.8105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The solution of the Dirac equation in the presence of the electromagnetic field on the one-dimensional barrier potential is studied. The energy spectrum and the eigenfunction of the Dirac equation obtained by solving the Dirac equation and we introduced annihilation and creation operators for the Hamiltonian has an identical form in the harmonic oscillator. Regions I and III separated by a potential barrier characterized by the gap energy with the eigenfunctions as a sinusoidal function, and region II has the form of an exponent function.  We found the eigenfunction involved positive and negative energy moves exponentially when passed through a barrier.
研究了电磁场作用下一维势垒势的狄拉克方程的解。通过求解狄拉克方程得到的狄拉克方程的能谱和本征函数在谐振子中具有相同的形式,我们引入了哈密顿算符的湮灭和产生算符。区I和区III被势垒隔开,势垒以间隙能为特征,特征函数为正弦函数,区II具有指数函数的形式。我们发现本征函数涉及正能量和负能量在通过势垒时呈指数运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信