Fourier series of sums of products of r-derangement functions

Taekyun Kim, Dae San Kim, Huck-In Kwon, L. Jang
{"title":"Fourier series of sums of products of r-derangement functions","authors":"Taekyun Kim, Dae San Kim, Huck-In Kwon, L. Jang","doi":"10.22436/JNSA.011.04.12","DOIUrl":null,"url":null,"abstract":"A derangement is a permutation that has no fixed point and the derangement number dm is the number of fixed pointfree permutations on an m element set. A generalization of the derangement numbers are the r-derangement numbers and their natural companions are the r-derangement polynomials. In this paper we will study three types of sums of products of r-derangement functions and find Fourier series expansions of them. In addition, we will express them in terms of Bernoulli functions. As immediate corollaries to this, we will be able to express the corresponding three types of polynomials as linear combinations of Bernoulli polynomials.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"79 1","pages":"575-590"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.011.04.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A derangement is a permutation that has no fixed point and the derangement number dm is the number of fixed pointfree permutations on an m element set. A generalization of the derangement numbers are the r-derangement numbers and their natural companions are the r-derangement polynomials. In this paper we will study three types of sums of products of r-derangement functions and find Fourier series expansions of them. In addition, we will express them in terms of Bernoulli functions. As immediate corollaries to this, we will be able to express the corresponding three types of polynomials as linear combinations of Bernoulli polynomials.
r-无序函数的乘积和的傅里叶级数
无序是没有不动点的排列,无序数dm是m元素集合上无不动点排列的个数。无序数的一种推广是r-无序数,它们的自然伙伴是r-无序多项式。在本文中,我们将研究三种r-无序函数的乘积和,并找到它们的傅立叶级数展开式。另外,我们将用伯努利函数来表示它们。作为这个的直接推论,我们将能够将相应的三种多项式表示为伯努利多项式的线性组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信