J. E. B. Ielecki, P. I. K. Otowski, J. A. W. Ańkowicz
{"title":"Impact of increased temperature of lower end-fitting of a composite long rod insulator on its mechanical strength under variable loads","authors":"J. E. B. Ielecki, P. I. K. Otowski, J. A. W. Ańkowicz","doi":"10.24425/aee.2023.145415","DOIUrl":null,"url":null,"abstract":": This paper describes results of tensile mechanical strength testing of two types of composite suspension line insulators from two manufacturers. In order to take into account the operation of composite insulators in overhead transmission lines with high-temperature low-sag (HTLS) conductors, the testing of their static and fatigue strength was performed at both ambient and elevated temperatures. The results showed that the static mechanical strength of composite insulators decreased with an increase in the temperature of the lower end fitting of the insulator, and proved that it followed a third-degree polynomial function. Calculations performed demonstrated that a significant cause of reduction in strength was the increase in the radial stress following the temperature increase in the crimped glass-epoxy resin core of the insulator. The results of the fatigue strength testing demonstrated that the increase in the temperature of the lower end fitting of the insulator up to 85 ◦ C degree had a little effect on the fatigue strength of the tested composite insulators.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2023.145415","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
: This paper describes results of tensile mechanical strength testing of two types of composite suspension line insulators from two manufacturers. In order to take into account the operation of composite insulators in overhead transmission lines with high-temperature low-sag (HTLS) conductors, the testing of their static and fatigue strength was performed at both ambient and elevated temperatures. The results showed that the static mechanical strength of composite insulators decreased with an increase in the temperature of the lower end fitting of the insulator, and proved that it followed a third-degree polynomial function. Calculations performed demonstrated that a significant cause of reduction in strength was the increase in the radial stress following the temperature increase in the crimped glass-epoxy resin core of the insulator. The results of the fatigue strength testing demonstrated that the increase in the temperature of the lower end fitting of the insulator up to 85 ◦ C degree had a little effect on the fatigue strength of the tested composite insulators.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.