Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function

Q3 Mathematics
Claire David
{"title":"Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function","authors":"Claire David","doi":"10.15673/TMGC.V11I2.1028","DOIUrl":null,"url":null,"abstract":"In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by\\[{\\mathcal W}(x)= \\sum_{n=0}^{+\\infty} \\lambda^n\\,\\cos \\left ( 2\\, \\pi\\,N_b^n\\,x \\right),\\]where $\\lambda$ and $N_b$ are two real numbers such that $0 <\\lambda<1$, $N_b\\,\\in\\,\\N$ and $\\lambda\\,N_b >1$, using a sequence a graphs that approximate the studied one.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"15 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I2.1028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by\[{\mathcal W}(x)= \sum_{n=0}^{+\infty} \lambda^n\,\cos \left ( 2\, \pi\,N_b^n\,x \right),\]where $\lambda$ and $N_b$ are two real numbers such that $0 <\lambda<1$, $N_b\,\in\,\N$ and $\lambda\,N_b >1$, using a sequence a graphs that approximate the studied one.
绕过动力系统:获得Weierstrass函数图的盒计数维数的简单方法
在下文中,绕过动力系统工具,我们提出了一种计算经典Weierstrass函数图的盒维的简单方法,对于任何实数$x$,通过\[{\mathcal W}(x)= \sum_{n=0}^{+\infty} \lambda^n\,\cos \left ( 2\, \pi\,N_b^n\,x \right),\](其中$\lambda$和$N_b$是两个实数,使得$0 1$),使用一个序列图来近似所研究的一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信