Takeshi Yabutsuka, Ryoki Karashima, S. Takai, T. Yao
{"title":"EFFECTS OF SANDBLASTING CONDITIONS IN PREPARATION OF BIOACTIVE STAINLESS STEELS BY THE FUNCTION OF APATITE NUCLEI","authors":"Takeshi Yabutsuka, Ryoki Karashima, S. Takai, T. Yao","doi":"10.3363/PRB.31.15","DOIUrl":null,"url":null,"abstract":": We formed many micropores on the surfaces of stainless steel (SUS) substrates by sandblasting method using alumina particles with 14 μm or 3 μm for average particle size and apatite nucleus (AN) treatment was operated. By these treatments, we provided bioactivity to the SUS substrates. We evaluated apatite-forming ability of the SUS substrate by soaking in a simulated body fluid. Apatite formation was induced on the surface of the substrate within 1 day. High adhesive strength of apatite layer was achieved by a mechanical interlocking effect between the apatite layer and the substrate. The adhesive strength was related to the size of the grinding particles in the sandblasting process.","PeriodicalId":20022,"journal":{"name":"Phosphorus Research Bulletin","volume":"27 1","pages":"15-19"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus Research Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3363/PRB.31.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
: We formed many micropores on the surfaces of stainless steel (SUS) substrates by sandblasting method using alumina particles with 14 μm or 3 μm for average particle size and apatite nucleus (AN) treatment was operated. By these treatments, we provided bioactivity to the SUS substrates. We evaluated apatite-forming ability of the SUS substrate by soaking in a simulated body fluid. Apatite formation was induced on the surface of the substrate within 1 day. High adhesive strength of apatite layer was achieved by a mechanical interlocking effect between the apatite layer and the substrate. The adhesive strength was related to the size of the grinding particles in the sandblasting process.