Discrete Differential Evolution for Text Summarization

Shweta Karwa, N. Chatterjee
{"title":"Discrete Differential Evolution for Text Summarization","authors":"Shweta Karwa, N. Chatterjee","doi":"10.1109/ICIT.2014.28","DOIUrl":null,"url":null,"abstract":"The paper proposes a modified version of Differential Evolution (DE) algorithm and optimization criterion function for extractive text summarization applications. Cosine Similarity measure has been used to cluster similar sentences based on a proposed criterion function designed for the text summarization problem, and important sentences from each cluster are selected to generate a summary of the document. The modified Differential Evolution model ensures integer state values and hence expedites the optimization as compared to conventional DE approach. Experiments showed a 95.5% improvement in time in the Discrete DE approach over the conventional DE approach, while the precision and recall of extracted summaries remained comparable in all cases.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"22 1","pages":"129-133"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The paper proposes a modified version of Differential Evolution (DE) algorithm and optimization criterion function for extractive text summarization applications. Cosine Similarity measure has been used to cluster similar sentences based on a proposed criterion function designed for the text summarization problem, and important sentences from each cluster are selected to generate a summary of the document. The modified Differential Evolution model ensures integer state values and hence expedites the optimization as compared to conventional DE approach. Experiments showed a 95.5% improvement in time in the Discrete DE approach over the conventional DE approach, while the precision and recall of extracted summaries remained comparable in all cases.
文本摘要的离散差分进化
本文提出了一种改进的差分进化(DE)算法和优化准则函数,用于抽取文本摘要应用。基于针对文本摘要问题提出的准则函数,使用余弦相似度度量对相似句子进行聚类,并从每个聚类中选择重要句子生成文档摘要。改进的差分进化模型保证了状态值的整数化,因此与传统的DE方法相比,可以加快优化速度。实验表明,离散DE方法比传统DE方法在时间上提高了95.5%,而提取摘要的精度和召回率在所有情况下都保持相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信