On fractal properties of Weierstrass-type functions

Q3 Mathematics
Claire David
{"title":"On fractal properties of Weierstrass-type functions","authors":"Claire David","doi":"10.15673/tmgc.v12i2.1485","DOIUrl":null,"url":null,"abstract":"In the sequel, starting from the classical Weierstrass function defined, for any real number $x$, by $ {\\mathcal W}(x)=\\displaystyle \\sum_{n=0}^{+\\infty} \\lambda^n\\,\\cos \\left(2\\, \\pi\\,N_b^n\\,x \\right)$, where $\\lambda$ and $N_b$ are two real numbers such that~\\mbox{$0 <\\lambda<1$},~\\mbox{$ N_b\\,\\in\\,\\N$} and $ \\lambda\\,N_b > 1 $, we highlight intrinsic properties of curious maps which happen to constitute a new class of iterated function system. Those properties are all the more interesting, in so far as they can be directly linked to the computation of the box dimension of the curve, and to the proof of the non-differentiabilty of Weierstrass type functions.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v12i2.1485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In the sequel, starting from the classical Weierstrass function defined, for any real number $x$, by $ {\mathcal W}(x)=\displaystyle \sum_{n=0}^{+\infty} \lambda^n\,\cos \left(2\, \pi\,N_b^n\,x \right)$, where $\lambda$ and $N_b$ are two real numbers such that~\mbox{$0 <\lambda<1$},~\mbox{$ N_b\,\in\,\N$} and $ \lambda\,N_b > 1 $, we highlight intrinsic properties of curious maps which happen to constitute a new class of iterated function system. Those properties are all the more interesting, in so far as they can be directly linked to the computation of the box dimension of the curve, and to the proof of the non-differentiabilty of Weierstrass type functions.
weierstrass型函数的分形性质
在续文中,从经典Weierstrass函数出发,对于任意实数$x$,由$ {\mathcal W}(x)=\displaystyle \sum_{n=0}^{+\infty} \lambda^n\,\cos \left(2\, \pi\,N_b^n\,x \right)$定义,其中$\lambda$和$N_b$是两个实数,使得~\mbox{$0 1 $,我们突出了奇特映射的内在性质,这些映射恰好构成了一类新的迭代函数系统。这些性质非常有趣,因为它们可以直接与曲线的盒维的计算和weerstrass型函数的不可微性的证明联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信