Analysis of Structural Strand Asymmetry in Non-coding RNAs

Jiayu Wen, B. Parker, G. Weiller
{"title":"Analysis of Structural Strand Asymmetry in Non-coding RNAs","authors":"Jiayu Wen, B. Parker, G. Weiller","doi":"10.1142/9781848161092_0021","DOIUrl":null,"url":null,"abstract":"Many RNA functions are determined by their specific secondary and tertiary structures. These structures are folded by the canonical G::C and A::U base pairings as well as by the non-canonical G::U complementary bases. G::U base pairings in RNA secondary structures may induce structural asymmetries between the transcribed and non-transcribed strands in their corresponding DNA sequences. This is likely so because the corresponding C::A nucleotides of the complementary strand do not pair. As a consequence, the secondary structures that form from a genomic sequence depend on the strand transcribed. We explore this idea to investigate the size and significance of both global and local secondary structure formation differentials in several non-coding RNA families and mRNAs. We show that both thermodynamic stability of global RNA structures in the transcribed strand and RNA structure strand asymmetry are statistically stronger than that in randomized versions preserving the same di-nucleotide base composition and length, and is especially pronounced in microRNA precursors. We further show that a measure of local structural strand asymmetry within a fixed window size, as could be used in detecting and characterizing transcribed regions in a full genome scan, can be used to predict the transcribed strand across ncRNA families.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many RNA functions are determined by their specific secondary and tertiary structures. These structures are folded by the canonical G::C and A::U base pairings as well as by the non-canonical G::U complementary bases. G::U base pairings in RNA secondary structures may induce structural asymmetries between the transcribed and non-transcribed strands in their corresponding DNA sequences. This is likely so because the corresponding C::A nucleotides of the complementary strand do not pair. As a consequence, the secondary structures that form from a genomic sequence depend on the strand transcribed. We explore this idea to investigate the size and significance of both global and local secondary structure formation differentials in several non-coding RNA families and mRNAs. We show that both thermodynamic stability of global RNA structures in the transcribed strand and RNA structure strand asymmetry are statistically stronger than that in randomized versions preserving the same di-nucleotide base composition and length, and is especially pronounced in microRNA precursors. We further show that a measure of local structural strand asymmetry within a fixed window size, as could be used in detecting and characterizing transcribed regions in a full genome scan, can be used to predict the transcribed strand across ncRNA families.
非编码rna结构链不对称分析
许多RNA的功能是由它们特定的二级和三级结构决定的。这些结构由正则G::C和A::U碱基对以及非正则G::U互补碱基折叠。RNA二级结构中的G::U碱基配对可能导致相应DNA序列中转录链和非转录链之间的结构不对称。这可能是因为互补链上相应的C::A核苷酸不配对。因此,从基因组序列形成的二级结构依赖于转录的链。我们探索了这一想法,以研究几种非编码RNA家族和mrna中全局和局部二级结构形成差异的大小和意义。我们发现,转录链中全局RNA结构的热力学稳定性和RNA结构链的不对称性在统计学上都比随机版本中保持相同的二核苷酸碱基组成和长度更强,并且在microRNA前体中尤其明显。我们进一步表明,在固定窗口大小内测量局部结构链的不对称性,可以用于在全基因组扫描中检测和表征转录区域,可以用于预测ncRNA家族的转录链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信