Ontology-based Graph Visualization for Summarized View

Xin Huang, Byron Choi, Jianliang Xu, W. K. Cheung, Yanchun Zhang, Jiming Liu
{"title":"Ontology-based Graph Visualization for Summarized View","authors":"Xin Huang, Byron Choi, Jianliang Xu, W. K. Cheung, Yanchun Zhang, Jiming Liu","doi":"10.1145/3132847.3133113","DOIUrl":null,"url":null,"abstract":"Data summarization that presents a small subset of a dataset to users has been widely applied in numerous applications and systems. Many datasets are coded with hierarchical terminologies, e.g., the international classification of Diseases-9, Medical Subject Heading, and Gene Ontology, to name a few. In this paper, we study the problem of selecting a diverse set of k elements to summarize an input dataset with hierarchical terminologies, and visualize the summary in an ontology structure. We propose an efficient greedy algorithm to solve the problem with (1-1/e)≈ 62%-approximation guarantee. Preliminary experimental results on real-world datasets show the effectiveness and efficiency of the proposed algorithm for data summarization.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Data summarization that presents a small subset of a dataset to users has been widely applied in numerous applications and systems. Many datasets are coded with hierarchical terminologies, e.g., the international classification of Diseases-9, Medical Subject Heading, and Gene Ontology, to name a few. In this paper, we study the problem of selecting a diverse set of k elements to summarize an input dataset with hierarchical terminologies, and visualize the summary in an ontology structure. We propose an efficient greedy algorithm to solve the problem with (1-1/e)≈ 62%-approximation guarantee. Preliminary experimental results on real-world datasets show the effectiveness and efficiency of the proposed algorithm for data summarization.
基于本体的汇总视图图形可视化
将数据集的一个小子集呈现给用户的数据摘要已经广泛应用于许多应用程序和系统中。许多数据集用分层术语编码,例如,国际疾病分类-9,医学主题标题和基因本体,仅举几例。在本文中,我们研究了选择不同的k个元素集合来总结具有层次术语的输入数据集的问题,并在本体结构中可视化总结。我们提出了一种有效的贪心算法来解决具有(1-1/e)≈62%近似保证的问题。在实际数据集上的初步实验结果表明了该算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信