The Semantic Shapes of Popular Music Lyrics: Graph-Based Representation, Analysis, and Interpretation of Popular Music Lyrics in Semantic Natural Language Embedding Space
M. Ogihara, Daniel Galarraga, Gang Ren, T. Tavares
{"title":"The Semantic Shapes of Popular Music Lyrics: Graph-Based Representation, Analysis, and Interpretation of Popular Music Lyrics in Semantic Natural Language Embedding Space","authors":"M. Ogihara, Daniel Galarraga, Gang Ren, T. Tavares","doi":"10.1109/ICMLA.2018.00203","DOIUrl":null,"url":null,"abstract":"Popular music lyrics are usually brief in length yet sophisticated in narrative content, emotional expression, and structural aesthetics. In this paper, we propose a graph-based analysis and interpretation framework for popular music lyrics using the sematic word embedding representation. This framework explores the temporal and structural information in music lyrics, such as word sequential pattern, lyric format pattern, and predominate song forms, to enhance the understanding of the interaction between the semantic and structural properties of music lyrics. Our proposed analysis and interpretation framework provides extensive tools for representing various properties of music lyrics as graph structural elements and then we implemented feature extraction tools for a comprehensive characterization of the lyric graph using graph analysis or complex network methodologies. The empirical studies based on contrasting music genres are then presented to illustrate the usage of the proposed tools and to demonstrate its modeling and analysis capabilities.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"132 1","pages":"1249-1254"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Popular music lyrics are usually brief in length yet sophisticated in narrative content, emotional expression, and structural aesthetics. In this paper, we propose a graph-based analysis and interpretation framework for popular music lyrics using the sematic word embedding representation. This framework explores the temporal and structural information in music lyrics, such as word sequential pattern, lyric format pattern, and predominate song forms, to enhance the understanding of the interaction between the semantic and structural properties of music lyrics. Our proposed analysis and interpretation framework provides extensive tools for representing various properties of music lyrics as graph structural elements and then we implemented feature extraction tools for a comprehensive characterization of the lyric graph using graph analysis or complex network methodologies. The empirical studies based on contrasting music genres are then presented to illustrate the usage of the proposed tools and to demonstrate its modeling and analysis capabilities.