Extended use of superconducting magnets for bio-medical development

Stoyan Stoynev
{"title":"Extended use of superconducting magnets for bio-medical development","authors":"Stoyan Stoynev","doi":"10.2172/1251187","DOIUrl":null,"url":null,"abstract":"Magnetic fields interact with biological cells affecting them in variety of ways which are usually hard to predict. Among them, it was observed that strong fields can align dividing cells in a preferred direction. It was also demonstrated that dividing cancer cells are effectively destroyed by applying electric fields in vivo with a success rate dependent on the cell-to-field orientation. Based on these facts, the present note aims to suggest the use of magnetic and electric fields for improved cancer treatment. Several possibilities of generating the electric fields inside the magnetic field volume are reviewed, main tentative approaches are described and discussed. Most if not all of them require special magnet configuration research which can be based on existing magnet systems in operation or in development.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1251187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic fields interact with biological cells affecting them in variety of ways which are usually hard to predict. Among them, it was observed that strong fields can align dividing cells in a preferred direction. It was also demonstrated that dividing cancer cells are effectively destroyed by applying electric fields in vivo with a success rate dependent on the cell-to-field orientation. Based on these facts, the present note aims to suggest the use of magnetic and electric fields for improved cancer treatment. Several possibilities of generating the electric fields inside the magnetic field volume are reviewed, main tentative approaches are described and discussed. Most if not all of them require special magnet configuration research which can be based on existing magnet systems in operation or in development.
超导磁体在生物医学发展中的广泛应用
磁场与生物细胞相互作用,影响它们的方式多种多样,通常很难预测。其中,观察到强电场可以使分裂的细胞沿首选方向排列。研究还表明,在体内施加电场可以有效地破坏分裂的癌细胞,其成功率取决于细胞对电场的取向。基于这些事实,本报告旨在建议使用磁场和电场来改善癌症治疗。评述了在磁场体内产生电场的几种可能性,并对主要的试探性方法进行了描述和讨论。大多数,如果不是全部,他们需要特殊的磁铁配置研究,可以基于现有的磁铁系统在运行或开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信