RF-activated surface standing acoustic wave for on-chip controllably aligning of bio-microparticles

Jinhong Guo, Yu Chen, Yuejun Kang
{"title":"RF-activated surface standing acoustic wave for on-chip controllably aligning of bio-microparticles","authors":"Jinhong Guo, Yu Chen, Yuejun Kang","doi":"10.1109/IMWS-BIO.2013.6756213","DOIUrl":null,"url":null,"abstract":"Surface Acoustic Wave (SAW) has emerged as a powerful technique for kinds of application, such as gas sensor, on-chip manipulation of microparticles or biological cells. In this paper, we present a numerical simulation and experimental study of standing surface acoustic wave (SSAW) induced acoustophoresis to assemble the particle samples in a microchannel. The simulation of the SAW is implemented by coupling the Maxwell equation and Newton equation. Once the acoustic wave along the piezosubstrate surface is obtained, the acoustophoresis force induced by surface standing acoustic wave (SSAW) is able to be derived. The SSAW generated by two parallel interdigital transducers (IDTs) which are excited by the radio frequency signal induce the acoustic radiation force to propel particles toward the pressure node. The assembling time also can be tunable by controlling the applied RF power. The numerical model and the experiment result can provide the critical guidance for the design of focusing component by SSAW which can significantly benefit the development of future on-chip flow cytometry.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"34 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Surface Acoustic Wave (SAW) has emerged as a powerful technique for kinds of application, such as gas sensor, on-chip manipulation of microparticles or biological cells. In this paper, we present a numerical simulation and experimental study of standing surface acoustic wave (SSAW) induced acoustophoresis to assemble the particle samples in a microchannel. The simulation of the SAW is implemented by coupling the Maxwell equation and Newton equation. Once the acoustic wave along the piezosubstrate surface is obtained, the acoustophoresis force induced by surface standing acoustic wave (SSAW) is able to be derived. The SSAW generated by two parallel interdigital transducers (IDTs) which are excited by the radio frequency signal induce the acoustic radiation force to propel particles toward the pressure node. The assembling time also can be tunable by controlling the applied RF power. The numerical model and the experiment result can provide the critical guidance for the design of focusing component by SSAW which can significantly benefit the development of future on-chip flow cytometry.
射频激活表面驻声波用于芯片上生物微粒的可控对准
表面声波(SAW)已成为一种强大的技术,应用于气体传感器、微粒子或生物细胞的芯片操作等领域。本文采用数值模拟和实验方法研究了驻表面声波(SSAW)诱导声阻抗在微通道内组装颗粒样品的过程。通过耦合麦克斯韦方程和牛顿方程实现了声表面波的仿真。一旦获得沿压电基板表面的声波,就可以推导出表面驻声波引起的声导力。由两个并联的数字间换能器(idt)在射频信号的激励下产生的SSAW诱导声辐射力推动粒子向压力节点移动。装配时间也可以通过控制所施加的射频功率来调节。数值模型和实验结果可为SSAW聚焦元件的设计提供重要指导,对未来片上流式细胞术的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信