{"title":"Reconstruction of the One-Dimensional Lebesgue Measure","authors":"N. Endou","doi":"10.2478/forma-2020-0008","DOIUrl":null,"url":null,"abstract":"Summary In the Mizar system ([1], [2]), Józef Białas has already given the one-dimensional Lebesgue measure [4]. However, the measure introduced by Białas limited the outer measure to a field with finite additivity. So, although it satisfies the nature of the measure, it cannot specify the length of measurable sets and also it cannot determine what kind of set is a measurable set. From the above, the authors first determined the length of the interval by the outer measure. Specifically, we used the compactness of the real space. Next, we constructed the pre-measure by limiting the outer measure to a semialgebra of intervals. Furthermore, by repeating the extension of the previous measure, we reconstructed the one-dimensional Lebesgue measure [7], [3].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Summary In the Mizar system ([1], [2]), Józef Białas has already given the one-dimensional Lebesgue measure [4]. However, the measure introduced by Białas limited the outer measure to a field with finite additivity. So, although it satisfies the nature of the measure, it cannot specify the length of measurable sets and also it cannot determine what kind of set is a measurable set. From the above, the authors first determined the length of the interval by the outer measure. Specifically, we used the compactness of the real space. Next, we constructed the pre-measure by limiting the outer measure to a semialgebra of intervals. Furthermore, by repeating the extension of the previous measure, we reconstructed the one-dimensional Lebesgue measure [7], [3].
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.