{"title":"An overview of Large-Eddy Simulation for wind loading on slender structures","authors":"S. Daniels, Zheng-Tong Xie","doi":"10.1680/jencm.18.00028","DOIUrl":null,"url":null,"abstract":"Understanding and predicting the effects of wind loading on a structure is necessary for a safe, effective, and economical engineering design. Wind tunnel techniques are expensive and often provide data that is not sufficiently detailed for the structural engineer. With increasing advances in computational capabilities, it has recently become feasible to investigate these flows using numerical techniques. Of these, one of the most effective approaches to simulate the turbulence observed in natural wind is Large-Eddy Simulation (LES). The application of LES to analyse wind loading, and aeroelastic effects on structures are only a recent venture in the field. This paper reviews the progress made over the last few decades for the analysis of wind flow around slender structures, and the more recent analysis incorporating the effects of freestream turbulence. Firstly, a review of the literature for generating freestream turbulence is carried out, and are assessed based on their flaws and strengths. A number of these are subsequently used for the analysis of surface pressures on an isolated tall model building. Subsequently, a review is made into wind tunnel analysis and LES for the aeroelastic analysis of bridge sections. The recent advances in the understanding of turbulence effects on the aeroestatic responses are summarised. The future of LES and its relationship wind tunnel analysis for wind loading analysis are discussed.","PeriodicalId":54061,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jencm.18.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4
Abstract
Understanding and predicting the effects of wind loading on a structure is necessary for a safe, effective, and economical engineering design. Wind tunnel techniques are expensive and often provide data that is not sufficiently detailed for the structural engineer. With increasing advances in computational capabilities, it has recently become feasible to investigate these flows using numerical techniques. Of these, one of the most effective approaches to simulate the turbulence observed in natural wind is Large-Eddy Simulation (LES). The application of LES to analyse wind loading, and aeroelastic effects on structures are only a recent venture in the field. This paper reviews the progress made over the last few decades for the analysis of wind flow around slender structures, and the more recent analysis incorporating the effects of freestream turbulence. Firstly, a review of the literature for generating freestream turbulence is carried out, and are assessed based on their flaws and strengths. A number of these are subsequently used for the analysis of surface pressures on an isolated tall model building. Subsequently, a review is made into wind tunnel analysis and LES for the aeroelastic analysis of bridge sections. The recent advances in the understanding of turbulence effects on the aeroestatic responses are summarised. The future of LES and its relationship wind tunnel analysis for wind loading analysis are discussed.