Statistical modeling for the prediction of survival rate in a neurodegenerative disease

Tasnime Hamdeni, Soufiane Gasmi, M. Sayadi, J. Ginoux
{"title":"Statistical modeling for the prediction of survival rate in a neurodegenerative disease","authors":"Tasnime Hamdeni, Soufiane Gasmi, M. Sayadi, J. Ginoux","doi":"10.1109/IC_ASET53395.2022.9765831","DOIUrl":null,"url":null,"abstract":"A new survival model called the Marshall-Olkin Generalized Defective Gompertz Distribution (MO-GDGD) has been recently developed. We present in this paper some mathematical properties of the model. An exhaustive simulation study is conducted for various values of the parameters of MO-GDGD and different sample sizes. Statistical inference methods were applied for the survival analysis of patients suffering from the neurogenerative pathology Amyotrophic Lateral Sclerosis. The type I right-censorship of the data was taken into account. Interesting results have been obtained.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"88 1","pages":"245-249"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET53395.2022.9765831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new survival model called the Marshall-Olkin Generalized Defective Gompertz Distribution (MO-GDGD) has been recently developed. We present in this paper some mathematical properties of the model. An exhaustive simulation study is conducted for various values of the parameters of MO-GDGD and different sample sizes. Statistical inference methods were applied for the survival analysis of patients suffering from the neurogenerative pathology Amyotrophic Lateral Sclerosis. The type I right-censorship of the data was taken into account. Interesting results have been obtained.
预测神经退行性疾病存活率的统计模型
最近提出了一种新的生存模型,称为Marshall-Olkin广义缺陷Gompertz分布(MO-GDGD)。本文给出了该模型的一些数学性质。对MO-GDGD参数的不同取值和不同样本量进行了详尽的模拟研究。应用统计推理方法对肌萎缩性侧索硬化症患者进行生存分析。考虑到数据的第一类权利审查。得到了有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信