A linearized spectral collocation method for Riesz space fractional nonlinear reaction–diffusion equations

IF 0.9 Q3 MATHEMATICS, APPLIED
Mustafa Almushaira
{"title":"A linearized spectral collocation method for Riesz space fractional nonlinear reaction–diffusion equations","authors":"Mustafa Almushaira","doi":"10.1002/cmm4.1177","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigate an effective linearized spectral collocation method for two-dimensional (2D) Riesz space fractional nonlinear reaction–diffusion equations with homogeneous boundary conditions. The proposed method is based on the Jacobi–Gauss–Lobatto spectral collocation method for spatial discretization and the finite difference method for temporal discretization. The full implementation of the method is demonstrated in detail. The stability of the numerical scheme is rigorously discussed and the errors with benchmark solutions that show second-order convergence in time and spectral convergence in space are numerically analyzed. Finally, numerical simulations for 2D Riesz space fractional Allen–Cahn and FitzHugh–Nagumo models are carried out to illustrate the effectiveness of the developed method and its ability for long-time simulations.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate an effective linearized spectral collocation method for two-dimensional (2D) Riesz space fractional nonlinear reaction–diffusion equations with homogeneous boundary conditions. The proposed method is based on the Jacobi–Gauss–Lobatto spectral collocation method for spatial discretization and the finite difference method for temporal discretization. The full implementation of the method is demonstrated in detail. The stability of the numerical scheme is rigorously discussed and the errors with benchmark solutions that show second-order convergence in time and spectral convergence in space are numerically analyzed. Finally, numerical simulations for 2D Riesz space fractional Allen–Cahn and FitzHugh–Nagumo models are carried out to illustrate the effectiveness of the developed method and its ability for long-time simulations.

Riesz空间分数阶非线性反应扩散方程的线性化谱配置方法
在这项工作中,我们研究了具有齐次边界条件的二维Riesz空间分数阶非线性反应扩散方程的有效线性化谱配置方法。该方法基于空间离散化的Jacobi-Gauss-Lobatto谱配点法和时间离散化的有限差分法。并详细说明了该方法的实现过程。对数值格式的稳定性进行了严格的讨论,并对基准解在时间上二阶收敛和在空间上谱收敛的误差进行了数值分析。最后,对二维Riesz空间分数阶Allen-Cahn和FitzHugh-Nagumo模型进行了数值模拟,以说明所开发方法的有效性和长时间模拟的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信