Pengurangan Dimensi dengan Metode Linear Discriminant Analist (LDA)

Winarnie Winarnie, K. Kusrini, Anggit Dwi Hartanto
{"title":"Pengurangan Dimensi dengan Metode Linear Discriminant Analist (LDA)","authors":"Winarnie Winarnie, K. Kusrini, Anggit Dwi Hartanto","doi":"10.29408/jit.v6i2.10069","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to reduce the dimensions of the dataset that affect the prediction of breast cancer. The data used in research is very much data or is called high-dimensional data. The use of classification algorithms has weaknesses when used on high-dimensional data, so an appropriate method is needed to reduce the dimensions or variables used. There are several methods that can be used to reduce dimensions. In this study using the method of linear discriminant analysis (LDA). LDA is a supervised machine learning algorithm that is used to classify data into several classes, using a linear technique to determine the best set of linear variables to unify class data. LDA is used to reduce the dataset variables used by retaining information that is important for the classification process. The method used in this research is using LDA in data processing and then using a logistic regression model for the classification process. The conclusion obtained in this study is that LDA can overcome the problem of multiclass classification. The results obtained were 16 wrong cases out of a total of 455 cases so that the results obtained were 0.035% misclassification.","PeriodicalId":13567,"journal":{"name":"Infotek : Jurnal Informatika dan Teknologi","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotek : Jurnal Informatika dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/jit.v6i2.10069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to reduce the dimensions of the dataset that affect the prediction of breast cancer. The data used in research is very much data or is called high-dimensional data. The use of classification algorithms has weaknesses when used on high-dimensional data, so an appropriate method is needed to reduce the dimensions or variables used. There are several methods that can be used to reduce dimensions. In this study using the method of linear discriminant analysis (LDA). LDA is a supervised machine learning algorithm that is used to classify data into several classes, using a linear technique to determine the best set of linear variables to unify class data. LDA is used to reduce the dataset variables used by retaining information that is important for the classification process. The method used in this research is using LDA in data processing and then using a logistic regression model for the classification process. The conclusion obtained in this study is that LDA can overcome the problem of multiclass classification. The results obtained were 16 wrong cases out of a total of 455 cases so that the results obtained were 0.035% misclassification.
线性分析方法减少维数(LDA)
本研究的目的是减少影响乳腺癌预测的数据集的维度。研究中使用的数据是非常多的数据,或者被称为高维数据。分类算法在处理高维数据时存在弱点,因此需要一种合适的方法来减少所使用的维数或变量。有几种方法可用于降维。本研究采用线性判别分析(LDA)方法。LDA是一种有监督的机器学习算法,用于将数据分为几个类,使用线性技术来确定最佳的线性变量集来统一类数据。LDA用于通过保留对分类过程很重要的信息来减少使用的数据集变量。本研究使用的方法是在数据处理中使用LDA,然后使用逻辑回归模型进行分类过程。本研究的结论是LDA可以克服多类分类问题。所得结果在455例中有16例是错误的,因此所得结果的误分类率为0.035%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信