A Symbolic Method To Reduce Power Consumption Of Circuits Containing False Paths

R. I. Bahar, G. Hachtel, E. Macii, F. Somenzi
{"title":"A Symbolic Method To Reduce Power Consumption Of Circuits Containing False Paths","authors":"R. I. Bahar, G. Hachtel, E. Macii, F. Somenzi","doi":"10.1109/ICCAD.1994.629820","DOIUrl":null,"url":null,"abstract":"Power dissipation in technology mapped circuits can be reduced by performing gate re-sizing. Recently we have proposed a symbolic procedure which exploits the compactness of the ADD data structure to accurately calculate the arrival times at each node of a circuit for any primary input vector. In this paper we extend our timing analysis tool to the symbolic calculation of required times and slacks, and we use this information to identify gates of the circuits that can be re-sized. The nice feature of our approach is that it takes into account the presence of false paths naturally. As shown by the experimental results, circuits re-synthesized with the technique we present in this paper are guaranteed to be at least as fast as the original implementations, but smaller and substantially less power-consuming.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1994.629820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Power dissipation in technology mapped circuits can be reduced by performing gate re-sizing. Recently we have proposed a symbolic procedure which exploits the compactness of the ADD data structure to accurately calculate the arrival times at each node of a circuit for any primary input vector. In this paper we extend our timing analysis tool to the symbolic calculation of required times and slacks, and we use this information to identify gates of the circuits that can be re-sized. The nice feature of our approach is that it takes into account the presence of false paths naturally. As shown by the experimental results, circuits re-synthesized with the technique we present in this paper are guaranteed to be at least as fast as the original implementations, but smaller and substantially less power-consuming.
一种降低含假路径电路功耗的符号方法
技术映射电路的功耗可以通过栅极尺寸调整来降低。最近,我们提出了一个符号过程,利用ADD数据结构的紧凑性来精确计算任何主输入向量在电路每个节点的到达时间。在本文中,我们将时序分析工具扩展到所需时间和松弛的符号计算,并使用这些信息来识别可以重新调整大小的电路门。我们的方法的优点在于它自然地考虑了假路径的存在。实验结果表明,用本文提出的技术重新合成的电路保证至少与原始实现一样快,但体积更小,功耗更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信