Yi Liu, Zengwei Zheng, Binbin Zhou, Jianhua Ma, Lin Sun, Ruichen Xia
{"title":"Multimodal Sarcasm Detection Based on Multimodal Sentiment Co-training","authors":"Yi Liu, Zengwei Zheng, Binbin Zhou, Jianhua Ma, Lin Sun, Ruichen Xia","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00090","DOIUrl":null,"url":null,"abstract":"Sarcasm detection is a difficult task in sentiment analysis because sarcasm often includes both positive and negative sentiments, making it difficult to identify. In recent years, visual information has been used to study sarcasm in social media data. Based on sentiment contrast in image and text, this paper proposes a Multimodal Sentiment and Sarcasm Gradient Co-training (MSSGC) model. The model uses text and image feature sharing networks to explicitly learn image and text sentimental features from image and text sentiment datasets and integrates a cross-modal fusion module for Multimodal Sarcasm Detection (MSD). The training algorithm uses the sentimental features for sarcasm detection by weighting the sentiment and sarcasm classification gradients. Extensive experiments, including case studies, are performed to evaluate the MSSGC model. The results illustrate that the proposed model outperforms recent MSD models. The code is available at: https://github.com/vantree/MSSGC.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"11 1","pages":"508-515"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcasm detection is a difficult task in sentiment analysis because sarcasm often includes both positive and negative sentiments, making it difficult to identify. In recent years, visual information has been used to study sarcasm in social media data. Based on sentiment contrast in image and text, this paper proposes a Multimodal Sentiment and Sarcasm Gradient Co-training (MSSGC) model. The model uses text and image feature sharing networks to explicitly learn image and text sentimental features from image and text sentiment datasets and integrates a cross-modal fusion module for Multimodal Sarcasm Detection (MSD). The training algorithm uses the sentimental features for sarcasm detection by weighting the sentiment and sarcasm classification gradients. Extensive experiments, including case studies, are performed to evaluate the MSSGC model. The results illustrate that the proposed model outperforms recent MSD models. The code is available at: https://github.com/vantree/MSSGC.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.