ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS

IF 0.3 Q4 MATHEMATICS, APPLIED
Haojun Li, Myung-joo Kang
{"title":"ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS","authors":"Haojun Li, Myung-joo Kang","doi":"10.12941/JKSIAM.2013.17.279","DOIUrl":null,"url":null,"abstract":"We are interested in an adaptive grid method for hyperbolic equations. A multiresolution analysis, based on a biorthogonal family of interpolating scaling functions and lifted interpolating wavelets, is used to dynamically adapt grid points according to the physical field profile in each time step. Traditional finite-difference schemes with fixed stencils produce high oscillations around sharp discontinuities. In this paper, we hybridize high-resolution schemes, which are suitable for capturing singularities, and apply a finite-difference approach to the scaling functions at non-singular points. We use a total variation diminishing Runge?Kutta method for the time integration. The computational cost is proportional to the number of points present after compression. We provide several numerical examples to verify our approach.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"3 1","pages":"279-294"},"PeriodicalIF":0.3000,"publicationDate":"2013-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2013.17.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

We are interested in an adaptive grid method for hyperbolic equations. A multiresolution analysis, based on a biorthogonal family of interpolating scaling functions and lifted interpolating wavelets, is used to dynamically adapt grid points according to the physical field profile in each time step. Traditional finite-difference schemes with fixed stencils produce high oscillations around sharp discontinuities. In this paper, we hybridize high-resolution schemes, which are suitable for capturing singularities, and apply a finite-difference approach to the scaling functions at non-singular points. We use a total variation diminishing Runge?Kutta method for the time integration. The computational cost is proportional to the number of points present after compression. We provide several numerical examples to verify our approach.
双曲方程的自适应网格模拟
我们对双曲型方程的自适应网格方法感兴趣。基于双正交插值尺度函数和提升插值小波的多分辨率分析,根据每个时间步的物理场轮廓动态调整网格点。传统的固定模板有限差分格式在尖锐的不连续点周围产生高振荡。在本文中,我们混合了适合捕获奇异点的高分辨率格式,并将有限差分方法应用于非奇异点的标度函数。我们用总变异来减少龙格?用库塔法求时间积分。计算成本与压缩后存在的点的数量成正比。我们提供了几个数值例子来验证我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信