{"title":"Design and formulation of surfactant stabilized O/W emulsion for application in enhanced oil recovery: effect of pH, salinity and temperature","authors":"Narendra Kumar, Saif Ali, Amit Kumar, A. Mandal","doi":"10.2516/ogst/2020066","DOIUrl":null,"url":null,"abstract":"Mobilization of crude oil from the subsurface porous media by emulsion injection is one of the Chemical Enhanced Oil Recovery (C-EOR) techniques. However, deterioration of emulsion by phase separation under harsh reservoir conditions like high salinity, acidic or alkaline nature and high temperature pose a challenge for the emulsion to be a successful EOR agent. Present study aims at formulation of Oil-in-Water (O/W) emulsion stabilized by Sodium Dodecyl Sulfate (SDS) using the optimum values of independent variables – salinity, pH and temperature. The influence of above parameters on the physiochemical properties of the emulsion such as average droplet size, zeta (ζ) potential, conductivity and rheological properties were investigated to optimize the properties. The influence of complex interactions of independent variables on emulsion characteristics were premeditated by experimental model obtained by Taguchi Orthogonal Array (TOA) method. Accuracy and significance of the experimental model was verified using Analysis Of Variance (ANOVA). Results indicated that the experimental models were significantly (p < 0.05) fitted with main influence of salinity (making it a critical variable) followed by its interactions with pH and temperature for all the responses studied for the emulsion properties. No significant difference between the predicted and experimental response values of emulsion ensured the adequacy of the experimental model. Formulated optimized emulsion manifested good stability with 2417.73 nm droplet size, −72.52 mV ζ-potential and a stable rheological (viscosity and viscoelastic) behavior at extensive temperature range. Ultralow Interfacial Tension (IFT) value of 2.22E-05 mN/m was obtained at the interface of crude oil and the emulsion. A favorable wettability alteration of rock from intermediate-wet to water-wet was revealed by contact angle measurement and an enhanced emulsification behavior with crude oil by miscibility test. A tertiary recovery of 21.03% of Original Oil In Place (OOIP) was obtained on sandstone core by optimized emulsion injection. Therefore, performance assessment of optimized emulsion under reservoir conditions confirms its capability as an effective oil-displacing agent.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 10
Abstract
Mobilization of crude oil from the subsurface porous media by emulsion injection is one of the Chemical Enhanced Oil Recovery (C-EOR) techniques. However, deterioration of emulsion by phase separation under harsh reservoir conditions like high salinity, acidic or alkaline nature and high temperature pose a challenge for the emulsion to be a successful EOR agent. Present study aims at formulation of Oil-in-Water (O/W) emulsion stabilized by Sodium Dodecyl Sulfate (SDS) using the optimum values of independent variables – salinity, pH and temperature. The influence of above parameters on the physiochemical properties of the emulsion such as average droplet size, zeta (ζ) potential, conductivity and rheological properties were investigated to optimize the properties. The influence of complex interactions of independent variables on emulsion characteristics were premeditated by experimental model obtained by Taguchi Orthogonal Array (TOA) method. Accuracy and significance of the experimental model was verified using Analysis Of Variance (ANOVA). Results indicated that the experimental models were significantly (p < 0.05) fitted with main influence of salinity (making it a critical variable) followed by its interactions with pH and temperature for all the responses studied for the emulsion properties. No significant difference between the predicted and experimental response values of emulsion ensured the adequacy of the experimental model. Formulated optimized emulsion manifested good stability with 2417.73 nm droplet size, −72.52 mV ζ-potential and a stable rheological (viscosity and viscoelastic) behavior at extensive temperature range. Ultralow Interfacial Tension (IFT) value of 2.22E-05 mN/m was obtained at the interface of crude oil and the emulsion. A favorable wettability alteration of rock from intermediate-wet to water-wet was revealed by contact angle measurement and an enhanced emulsification behavior with crude oil by miscibility test. A tertiary recovery of 21.03% of Original Oil In Place (OOIP) was obtained on sandstone core by optimized emulsion injection. Therefore, performance assessment of optimized emulsion under reservoir conditions confirms its capability as an effective oil-displacing agent.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.