Comparing the Kirwan and noncommutative resolutions of quotient varieties

IF 1.2 1区 数学 Q1 MATHEMATICS
S. Spenko, Michel van den Bergh
{"title":"Comparing the Kirwan and noncommutative resolutions of quotient varieties","authors":"S. Spenko, Michel van den Bergh","doi":"10.1515/crelle-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract Let a reductive group G act on a smooth variety X such that a good quotient X / / G {X/\\!\\!/G} exists. We show that the derived category of a noncommutative crepant resolution (NCCR) of X / / G {X/\\!\\!/G} , obtained from a G-equivariant vector bundle on X, can be embedded in the derived category of the (canonical, stacky) Kirwan resolution of X / / G {X/\\!\\!/G} . In fact, the embedding can be completed to a semi-orthogonal decomposition in which the other parts are all derived categories of Azumaya algebras over smooth Deligne–Mumford stacks.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"51 1","pages":"1 - 43"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0024","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let a reductive group G act on a smooth variety X such that a good quotient X / / G {X/\!\!/G} exists. We show that the derived category of a noncommutative crepant resolution (NCCR) of X / / G {X/\!\!/G} , obtained from a G-equivariant vector bundle on X, can be embedded in the derived category of the (canonical, stacky) Kirwan resolution of X / / G {X/\!\!/G} . In fact, the embedding can be completed to a semi-orthogonal decomposition in which the other parts are all derived categories of Azumaya algebras over smooth Deligne–Mumford stacks.
比较商变量的柯湾分辨和非交换分辨
摘要:令约化群G作用于光滑变量X,使得良商X/ / G {X/\!\!/ G}的存在。我们证明了X/ / G {X/\!\!/G},由X上的G等变向量束得到,可以嵌入到X/ /G {X/\!\!/ G}。事实上,嵌入可以完成为半正交分解,其中其他部分都是光滑Deligne-Mumford叠上的Azumaya代数的派生范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信