Data-driven sequential goal selection model for multi-agent simulation

Wenxi Liu, Zhe Huang, Rynson W. H. Lau, Dinesh Manocha
{"title":"Data-driven sequential goal selection model for multi-agent simulation","authors":"Wenxi Liu, Zhe Huang, Rynson W. H. Lau, Dinesh Manocha","doi":"10.1145/2671015.2671024","DOIUrl":null,"url":null,"abstract":"With recent advances in distributed virtual worlds, online users have access to larger and more immersive virtual environments. Sometimes the number of users in virtual worlds is not large enough to make the virtual world realistic. In our paper, we present a crowd simulation algorithm that allows a large number of virtual agents to navigate around the virtual world autonomously by sequentially selecting the goals. Our approach is based on our sequential goal selection model (SGS) which can learn goal-selection patterns from synthetic sequences. We demonstrate our algorithm's simulation results in complex scenarios containing more than 20 goals.","PeriodicalId":93673,"journal":{"name":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","volume":"57 1","pages":"107-116"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2671015.2671024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With recent advances in distributed virtual worlds, online users have access to larger and more immersive virtual environments. Sometimes the number of users in virtual worlds is not large enough to make the virtual world realistic. In our paper, we present a crowd simulation algorithm that allows a large number of virtual agents to navigate around the virtual world autonomously by sequentially selecting the goals. Our approach is based on our sequential goal selection model (SGS) which can learn goal-selection patterns from synthetic sequences. We demonstrate our algorithm's simulation results in complex scenarios containing more than 20 goals.
多智能体仿真的数据驱动顺序目标选择模型
随着分布式虚拟世界的最新发展,在线用户可以访问更大、更逼真的虚拟环境。有时,虚拟世界的用户数量不足以使虚拟世界具有真实感。在本文中,我们提出了一种人群模拟算法,该算法允许大量虚拟代理通过顺序选择目标来自主地在虚拟世界中导航。我们的方法是基于序列目标选择模型(SGS),它可以从合成序列中学习目标选择模式。我们在包含20多个目标的复杂场景中展示了我们的算法的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信