Combining Numerical Simulations, Machine Learning and Genetic Algorithms for Optimizing a POCl3 Diffusion Process

Hannes Wagner-Mohnsen, S. Esefelder, B. Klöter, B. Mitchell, C. Schinke, Dennis Bredemeier, P. Jäger, R. Brendel
{"title":"Combining Numerical Simulations, Machine Learning and Genetic Algorithms for Optimizing a POCl3 Diffusion Process","authors":"Hannes Wagner-Mohnsen, S. Esefelder, B. Klöter, B. Mitchell, C. Schinke, Dennis Bredemeier, P. Jäger, R. Brendel","doi":"10.1109/PVSC43889.2021.9518450","DOIUrl":null,"url":null,"abstract":"Advanced mathematical methods, like machine learning or genetic algorithms, have the potential to further accelerate the computer-aided optimization of processes. In this paper we combine the power of sophisticated numerical simulations with these modern concepts. The goal is to combine the strength of both approaches, high predictive quality from numerical models and fast prediction power of machine learning and genetic algorithms. We demonstrate this on a POCl3 diffusion process and optimize an industry relevant PERC solar cell up to 23.4%. This approach is not limited to POCl3 or PECR cells and can be applied to other cell architectures or processes.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"24 1","pages":"0528-0531"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Advanced mathematical methods, like machine learning or genetic algorithms, have the potential to further accelerate the computer-aided optimization of processes. In this paper we combine the power of sophisticated numerical simulations with these modern concepts. The goal is to combine the strength of both approaches, high predictive quality from numerical models and fast prediction power of machine learning and genetic algorithms. We demonstrate this on a POCl3 diffusion process and optimize an industry relevant PERC solar cell up to 23.4%. This approach is not limited to POCl3 or PECR cells and can be applied to other cell architectures or processes.
结合数值模拟、机器学习和遗传算法优化POCl3扩散过程
先进的数学方法,如机器学习或遗传算法,有可能进一步加速计算机辅助的过程优化。在本文中,我们将复杂的数值模拟的力量与这些现代概念结合起来。目标是结合两种方法的强度,数值模型的高预测质量以及机器学习和遗传算法的快速预测能力。我们在POCl3扩散过程中证明了这一点,并优化了行业相关的PERC太阳能电池高达23.4%。这种方法不仅限于POCl3或PECR细胞,还可以应用于其他细胞架构或过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信