Learning to identify electrons

Julian Collado, J. Howard, Taylor Faucett, Tony Tong, P. Baldi, D. Whiteson
{"title":"Learning to identify electrons","authors":"Julian Collado, J. Howard, Taylor Faucett, Tony Tong, P. Baldi, D. Whiteson","doi":"10.1103/PhysRevD.103.116028","DOIUrl":null,"url":null,"abstract":"We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a $\\approx 5\\%$ gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.","PeriodicalId":8429,"journal":{"name":"arXiv: High Energy Physics - Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.103.116028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a $\approx 5\%$ gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.
学习识别电子
我们研究了在对撞机实验中通常用于区分电子和射流背景的最先进的分类特征是否忽略了有价值的信息。对电磁和强子量热计沉积物的深度卷积神经网络分析与典型特征的表现进行了比较,揭示了大约5%的差距,这表明这些较低水平的数据确实包含未开发的分类能力。为了揭示这些未使用信息的本质,我们使用最近开发的技术将深度网络映射到物理可解释的可观察空间中。我们确定了两个简单的量热计观测值,它们通常不用于电子识别,但它们模拟了卷积网络的决策,几乎缩小了性能差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信